The Copernicus Marine Service and ocean observation requirements

Marine Monitoring

Copernicus Marine Service: user and policy driven service

OCEAN PRODUCTS

nfo

σ

d)

Ocean product catalogue, to download or visualize data accross more than 10 variables, including historic, current and forecasted data.

OCEAN MONITORING INDICATORS

Essential variables monitoring the health of the ocean

OCEAN STATE REPORT

Extensive annual analysis on the state of the ocean over nearly 20 years and severe/notable annual events

-

> 31 000 subscribers C OCEAN MARINE \bigcirc EDUCATION, PUBLIC, HEALTH ີ EXTREMES. HAZARDS 5 MARINE

0

TRADE

& MARINE

NAVIGATION

The essential role of observing systems

The Copernicus Marine Service is highly dependent on the satellite (Sentinels) and in-situ observing capabilities

Role of Copernicus Marine Service wrt agencies in charge of observing systems: requirements, design, impact assessment & advocacy

The essential role of observing systems

Present and future requirements both for in-situ and satellite observations (Sentinels) have been defined.

Based on **impact assessment** (OSE/OSSEs) and expert analyses. **Feedback loop across the value chain** : users <=> service <=> products (based on models & observations) <=> observations

Network of a large number of Copernicus Marine Service experts.

SYSTEMATIC REVIEW ARTICLE [Provincinally accepted] The full-text will be published soon. A Notify m Front, Mar. Sci. | doi: 10.3389/fmars.2019.00234

From observation to information and users: the Copernicus Marine Service perspective

 Pierre Yves Le Traon¹⁰, Mathia Reppucci, Frique Alvarez Fanjul², Lotfi Aouf¹, Arno Behrens⁴, Maria Belmonte⁴, Abdershim Bentamy³, Laurent Bertino⁷, Vittorio E. Brando⁸, Matilde Kreiner², Mouni Benkina¹¹, Bruno Buongiorno Nardelli¹⁰, Thierry Carval², Stefania Cilibert¹¹, Hervé CLAUSTR²¹, Emanuela Clementt¹¹-1, Giovanni Coppini¹¹, Gianpiero Cossarini¹¹, Marta De Alfonso Alonso-Muñoyerro³, Gerald Dibarboure⁴¹, Frode Dinessen⁴¹, Marie Drevillon¹¹, Yann Drillet¹, Yannice Faugere¹¹, Vicente Fernández²¹, Andrew Fleming¹², M. Isabel García-Hermosa¹, Marco Sottillo^{2,21}, Cilles Carric¹, Gi Florent Gaspan¹¹, Maria De Alfonso Alonso-Muñoyerro³, Gerald Dibarboure⁴¹, Frode Dinessen⁴¹, Marie Drevillon¹¹, Yann Drillet¹, Yannice Faugere¹¹, Vicente Fernández²¹, Andrew Fleming¹², M. Isabel García-Hermona¹¹, Busche Karcia-Hermona¹¹, Chris Harris²¹, Fabrice Hernandez²¹, Jargen Buus-Hinkle²¹, Jacob L. Høyer³, Juha Karvonen³¹, Susan Kay³¹, Robert King³³, Thomas Lavergne⁴¹, Angelique Melet¹¹, Gienn Nolan¹¹, Anada Pascual¹¹, Janny Beny Pitola^{11,11}, Atanas V. Palazov³⁷, Jean-Francois Piolle⁴, Marie Isabelle Pujol¹⁰, Anne-Christine Pequignet²¹, Elisaveta Peneva³⁰, Begoña Pérez-Gómez³¹, Loic Petit de la Villeon³⁰, Nadia Pinard¹¹¹, Andree Pisano¹¹, Sylvie Pouliquen³⁰, Rebecca A. Reid³¹, Elisabeth RENY, Rosalia Santoler¹¹, Sinhu Xohuchmanni, Gianiuca Volpe¹, Joanna Santeva¹, Marina Tonani¹¹⁰, LucVandenbulcke²¹, Karina von Schuckmanni, Gianiuca Volpe¹, Cecilia Wettre⁴¹ and Anna Zacharioudaki¹¹

Satellite requirements

- Ensure a continuity of the present capability of the Sentinel missions (S1, S3, S6) (+ S2)
- Develop new capabilities for wide swath altimetry (S3 NG)
- Fly a European microwave mission for high spatial resolution observations of ocean surface temperature and sea ice concentration.
- Fly a geostationary ocean colour mission over Europe to strongly improve the time resolution of ocean colour observations over European seas.
- Ensure continuity (with improvements) of the Cryosat-2 mission for sea ice thickness monitoring and sea level monitoring in polar regions (CRISTAL).
- R&D actions should be developed to advance our capabilities to observe sea surface salinities and ocean currents from space.

+Participation of MOI/CMEMS experts in the EU Polar Expert Group [PEG-I/PEG-II reports]. The EG recommends to retain as first priority the **Copernicus Imaging Microwave Radiometer (CIMR).**

In-Situ Requirements

Copernicus Marine Service requirements for the evolution of the Copernicus In Situ Component

Commission

Mercator Ocean International, EUROGOOS, and CMEMS partners

Version 2 - March 2021

Summary

- Consolidation and sustainability of in-situ observing systems remain a strong concern. There are critical sustainability gaps and major gaps for biogeochemical observations (carbon, oxygen, nutrients, chl-a).
- New mechanisms need to be set up between the EU and member states to address them, in particular, in the perspective of EOOS.
- To follow the evolution of ocean models, there is a clear need of more sensors deployed at global and regional scale.
- **Timeliness is also an important parameter** to be improved; this is particularly important for **coastal applications** where ocean dynamics evolve on a rather short time.
- In terms of platforms, consolidation of the Argo core mission (T&S-0-2000 m) including the sampling of polar seas and marginal seas and developing its two major extensions (BGC Argo and Deep Argo) is a strong priority.
- Improving ROOSes and key observing systems such as ferryboxes, gliders, tide gauges and HF Radars are strong priorities.
- A specific effort for the Arctic region is needed. More ITPs and Argo floats are needed. IMB buoys are needed to measure ice thickness and snow depth.
- Need Fiducial Reference Measurements for Copernicus satellite calibration/validation.

MERCATOR OCEAN