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Scope of the document 

This report summarises the technical achievements of the 9-month study, which has been 

funded by the European Maritime and Fisheries Fund (EMFF) through service contract 

No. CINEA/EMFF/2020/3.1.16/Lot2/SI2.850940 

This document describes the approach used to improve the accuracy of vessel density maps 

and provides the corresponding map results and findings. 

Executive Summary 

This report documents in detail the work carried out in the context of the service contract 

No. CINEA/EMFF/2020/3.1.16/Lot2/SI2.850940-Studies to support the European Green Deal 

- Lot 2 “Vessel density” from the 20th August 2021 up until the 20th May 2022.  

This project aims to address the general objective of producing accurate digital raster maps 

of shipping activities in European waters, that will help plan and serve for the analysis of the 

marine aspects of the Green Deal. The overall goal of this project was to investigate the 

capabilities and capacities of Satellite based Automatic Identification Systems, while 

exploring its complementarity with other sources (such as Terrestrial -based AIS and Earth 

Observation images), so as to improve our overall knowledge of vessel density in European 

waters. As we show within, there are clear benefits of fusing sensory data from heterogenous 

sensors, in terms of extended spatial and temporal coverage and increased confidence in the 

results.  

Towards this, we explore image processing techniques based on Artificial Intelligence and 

Machine Learning approaches to detect vessels from EO images, while we develop algorithmic 

techniques capable of interpolating the missing data with high accuracy.  

Terrestrial and Satellite AIS data from MarineTraffic, have been used in this study to compare 

reception accuracy and coverage, while EO imagery was acquired from the Copernicus 

Programme (Sentinel 1 and Sentinel 2).  

Although the results are unique in scope and detail, the estimates from this study are in good 

agreement with the related literature[1]–[5]. The main achievements and findings can be 

summarised as follows 

• We designed and developed a novel algorithmic approach for ship detection in satellite 

EO images. 

• An empirical performance and accuracy analysis has been performed between Satellite 

AIS, Terrestrial AIS and EO datasets with the aim of revealing and highlighting areas 
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and conditions that could affect density map generation. Exemplification of 

complementarities of terrestrial and satellite-based AIS, as well as EO datasets are 

presented. 

• We generate a series of detailed vessel density maps (at different spatial resolutions), 

based on all previous datasets and “detectability maps” indicating the probability that a 

vessel can cross an area without potentially being detected (from a single sensory 

platform).  

• We present a novel trajectory reconstruction method, capable of highly accurate “gap 

filling” based on historical vessel information 

As part of this work, we design and implement a prototype toolbox, providing methods 

covering all phases of the data process; from cleaning and smoothing, to trajectory 

reconstruction and finally density map generation. We make this software publicly available1 

and release it under a Creative Commons license (Attribution-NonCommercial 3.0 

Unported (CC BY-NC 3.0)). 

The results of this study have appeared in several scientific publications. The overall work 

reported within has been conducted by MarineTraffic with the support of Ubitech. 

  

 
1 https://www.marinetraffic.com/research/the-marinetraffic-ais-toolbox/ 
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Partners 

 

  

 

MarineTraffic (hereinafter MT) is a research-intensive SME founded in 2007 and today a key 

player in the maritime analytics market, offering vessel tracking services and actionable 

maritime intelligence. It is the leading maritime Software as a Service (SaaS) in terms of global 

market penetration & popularity.  

MT started as an experiment in late 2007, based on the newly introduced Automatic 

Identification System (AIS) [4], being the first ever website to publicly display vessel positions 

in real time. The system leveraged open data and state of the art internet technologies-the 

novel back then-map “mashups” and the power of crowdsourcing. The ΜΤ domain was 

registered and the website was launched, with some basic functionality: an open system where 

anyone who had access to AIS data could send the data over and have it automatically 

displayed on the world map. Due to its popularity, ΜΤ quickly became synonymous to vessel 

tracking at a global scale. MT went on to expand its coastal network to more than 5K AIS 

coastal receiving stations, having today the most extensive proprietary AIS receivers’ network 

and establishing alliances with the major Satellite AIS providers (e.g. ExactEarth, Orbcomm 

and others). Today coverage is more or less global, while MT holds a historical database 

extending over a period of more than 10 years, providing a valuable source for descriptive, 

predictive and even prescriptive analytics.  

Nowadays, multiple sources make density maps available either for free or for a fee. ΜΤ has 

been one of the pioneers in releasing free to the public open density maps as early as 2013-

2014. At the time, these were based both on terrestrial and satellite AIS datasets.  
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Figure 1. MarineTraffic 2015 Global Density maps 

This report outlines the challenges of generating accurate density maps based on sparse AIS 

datasets and provides a number of solutions that address these challenges, based on 

technologies and approaches built and tested within MT at an industrial level. With the support 

of UBITECH (UBI), a leading, highly innovative software house, systems integrator and 

technology provider. UBITECH provides leading edge intelligent technical solutions and 

consulting services to businesses, organizations and government in order to allow the efficient 

and effective secure access and communication with various heterogeneous information 

resources and services, anytime and anywhere. UBITECH enables real-time valid information 

processing and decision making, the realization of intelligent business environments, and B2B 

and B2C transactions by providing high added-value business –oriented and –based solutions.  
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1. Introduction 

The European Commission has set a goal of achieving zero emissions of greenhouse gases 

by 2050[6], in line with the Paris Agreement[7], where countries globally have agreed to pursue 

efforts to limit global warming to below 2 degrees Celsius, compared to pre-industrial levels. 

Scenarios explored in this context, suggested that achieving this will require doubling 

electricity production with about a quarter of it being produced offshore[6]. resulting in 

enormous changes to European waters. Up to a quarter of certain countries’ waters could be 

devoted to wind farms. This will inevitably impact other marine activities. Current sea related 

uses and activities involve maritime shipping, sea-fishing, extended aquaculture, oil and gas 

exploration and drilling, leisure and boating activities, cultural heritage conservation initiatives 

and many more. Improving our understanding of activities that take place at sea, including 

their spatial and temporal aspects, is vital in the light of an intensified use of maritime space[8]. 

The aim of this study is to add to the evidence base that will 

underpin planning for this transition.  

Today the most valuable resource for understanding shipping and marine related activities is 

vessel traffic data, as collected though the Automatic Identification System. To support 

improved understanding of this data, commonly density maps are used as an information 

visualisation method. The added value of density maps is that they support a bird’s eye view 

of vessel traffic, through providing an overview of vessel behaviour either at a regional or 

global scale. Analysing density maps as they evolve over time also supports understanding 

traffic changes and pattern distribution.  

From density maps one can determine the patterns of life in a given study area. Patterns of 

Life are understood as observable human activities that can be described as patterns in the 

maritime domain related to a specific activity (e.g., fishing) [9]. Essentially, vessel-based 

maritime activity can be described in space and time, while classified to a number of known 

activities at sea (fishing etc). The spatial element describes recognised areas where maritime 

activity takes place; thus, including ports, fishing grounds, offshore energy infrastructure, 

dredging areas, etc. The transit paths to and from these areas also describe the spatial 

element (e.g., commercial shipping, ferry routes, etc.), while the temporal element often holds 

additional information for categorising these activities (e.g., fishing period, time of year, 

etc.)[10]. 

Capturing the accurate and complete trajectory of a moving object though, is almost 

impossible in real conditions, due to the inherent limitations of data acquisition and storage 

mechanisms. As a result, the continuous movement of an object is usually obtained as an 

approximate form of discrete samples of spatiotemporal locations [4]. Sometimes the error is 
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acceptable for a given use case while in other occasions it may lead to erroneous 

interpretations.  

The overall goal of this study to investigate the capabilities and capacities of AIS datasets for 

accurate density maps generation, and especially Satellite AIS capabilities and limitations, 

while exploring its complementarity with other sources (such as Terrestrial AIS and EO 

images), and designing methods for improving its “data fitness” for the specific use. The rest 

of this study explores the above theme.  
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2. Methodology and overall Approach  

Creating accurate vessel density requires overcoming issues pertinent in the underlying data. 

Our approach is organised around three main tasks, while following an overall raster-based 

spatial analysis approach: Step 1 involves all the steps towards homogenising all different 

spatial datasets across a common grid; Step 2 involves the tasks for performing the 

quantitative and qualitative comparison of all available data sources; while Step 3 involves the 

tasks of generating improved density maps.  

Our overall implementation methodology is shown graphically in Figure 2.  

 

Figure 2. Approach 

In the context of Task 1, we implement a Python workflow that processed data from the 

aforementioned sources, detects vessel positions, and maps them to a common grid, in order 

to perform calculations per grid cell, so that we are able to compare vessel density data from 

different sources in Task 2. The output of Task is a set of vessel positions and detections for 

each data source, stored in related database table, named “density tables”.  

The outputof Task 1 is provided as input to the analysis tasks described in Task 2. To facilitate 

the analysis of vessel density and compare the different sources, we use a uniform grid and 

we map the derived positions of Task 1 to this grid. Then, we perform calculations per grid 

cell. Next, we will compare the different sources per grid cell, which leads to corrections with 

respect to the real number of vessels that are located in a grid cell. In the analysis step we also 

calculate the probability of detection per grid cell for Sat AIS, by using data from the other 

sources. 
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The analysis output of Task 2 is then used to create a new set of density maps in Task 3In this 

task, we enhance the AIS-based approaches used by EMODnet, using the results of Task 1 and 

Task 2, as we explain in more detail later on, and create a set of density maps based on Sat 

AIS, as well as other sources such as EO. The corrected density maps will be provided as sets 

of raster tiles that can be deployed on GeoServer2, so that they can be easily accessible and 

used, complying to the OGC standards.  

 
2 http://geoserver.org 

http://geoserver.org/
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3. Background  

3.1 Automatic Identification System  

A trajectory can be captured as a time stamped series of location points denoted as p0(x0,y0,t0), 

p1(x1,y1,t1), …, pn(xn,yn,tn), where xi,yi represents geographic coordinates of the moving object at 

time ti and N is the total number of elements in the series. Simply put, to generate the trajectory, 

a sensor needs to acquire its coordinates x,y at time t.  

 

Figure 3. In red the true trajectory, while in  black the approximated trajectory 
captured by a given sensor 

Notice that the approximated trajectory can also be represented as a series of line segments 

between the stamped positions (given that there is a unique identifier grouping these positions 

into the same trajectory)  

∑8 𝑡𝑟𝑎𝑗1 = 𝑝0𝑝1, 𝑝1𝑝2, 𝑝2𝑝3, 𝑝3𝑝4, 𝑝4𝑝5, 𝑝5𝑝6, 𝑝6𝑝7, 𝑝7𝑝8 

The most commonly used dataset for tracking vessel activities at sea is the Automatic 

Identification System (AIS), a collaborative, self-reporting system that allows vessels to 

broadcast their identification information, characteristics and destination, along with other 

information originating from on-board devices and sensors, such as location, speed and 

heading [2]. AIS messages are broadcast periodically and can be received by other vessels 

equipped with AIS transceivers, as well as by on the ground or satellite-based sensors. This 

information is transmitted at regular intervals ranging anywhere from 2 seconds to 3 minutes, 

according to the vessel’s behaviour. Since the 31st of December 2004, AIS is compulsory for 

all vessels of 300 gross tonnage and upwards engaged on international voyages, cargo 

vessels of 500 gross tonnage and upwards not engaged on international voyages and all 

passenger vessels irrespective of size. 
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Class A systems 

Ships Dynamic Conditions Reporting Rate 

At anchor or moored 3 minutes 

0–14 knots 10 Seconds 

0–14 knots and changing course 3⅓ seconds 

14–23 knots 6 seconds 

14–23 knots and changing course 2 seconds 

Faster than 23 knots 2 seconds 

Faster than 23 knots and changing course 2 seconds 

Class B systems 

Ships Dynamic Conditions Reporting Rate 

0–2 knots 3 minutes 

Above 2 knots 30 seconds 

Other AIS sources 

Source Reporting Rate 

Search and Rescue (SAR) aircraft 10 seconds 

Aids to navigation 3 minutes 

AIS base station 
10 seconds or 3.33 seconds, depending on 

operating parameters 

Table 1. The AIS reporting rate depends on the vessels behaviour  

The vessels which are required to carry AIS are equipped with Class A AIS transponders, 

whereas other vessels can carry either Class A or Class B AIS transponders. The Class A 

transponder has a more powerful signal and transmits messages more frequently than the 

Class B transponders; therefore, Class A transponders typically have a finer spatial and 

temporal resolution. Vessels which may carry Class B transponders include recreational 

vessels, fishing vessels, or small passenger vessels [11] 

Ground-based and satellite-based AIS dataset have some considerable differences,  

• Terrestrial-based AIS (Ter AIS): Terrestrial receivers are land-based stations which 

receive messages from vessels within their line of sight. Once the message is 

received, it is relayed via network connection to a computer for storage, processing, 
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and visualization. Typically, with optimal terrestrial receiver setup, messages from up 

to 40 – 60 nautical miles away can be received. Terrestrial receivers are land-based 

stations which receive messages from vessels within their line of sight.  

• Space-based AIS (Sat AIS): Satellite receivers function similarly to terrestrial receivers 

by transmitting the received AIS message to a computer for data storage, processing, 

and visualization. Satellite receivers do not require line of sight; therefore, they have a 

large field of view (up to 5,000 km) [12].  

Apart from AIS receivers installed on coastal facilities or satellites, AIS receivers may also be 

mounted on oil rigs, wind turbines and other offshore structures, in order to monitor the vessel 

traffic in areas away from the coast. Towards this direction, roaming stations are also used. A 

roaming station is essentially a vessel that is equipped with an AIS receiver and satellite 

internet connection and, thus, it is able to transmit not only its own AIS messages but also the 

ones that it receives from nearby vessels.  

To date, several challenges remain to accurately producing AIS-based density maps, mostly 

due to the inherent limitations, inaccuracies and complexities of managing AIS data, as will be 

discussed later in this study. 

3.2 Data Fitness  

The concept of data quality is somewhat vague, but an effective and widely used definition for 

data quality is “fitness for use”, which is the ability of the data collected to meet user 

requirements[13]. In this context, specific applications may allow some imprecision based on 

their requirements. AIS datasets have long been used for maritime density maps and 

researchers have identified some of the underlying difficulties affecting the data fitness [14]–

[16]  

Although AIS datasets are one of the most important sources of information for maritime 

traffic, the resulting spatial trajectories may have several missing data points, due to several 

reasons including design features. 

I. Firstly, datasets that have been collected by Satellites and those by Terrestrial 

stations will have different granularities and resolutions. Earth orbiting Satellites 

collecting AIS messages are easily congested when there is a large number of 

vessels within their given field of view. AIS is based on the Time Division Multiple 

Access (TDMA) radio access scheme which ensures that no two ships within radio 

range of each other are transmitting at the same time. The TDMA defined in the AIS 

standard creates 4,500 available time-slots in each minute but this can be easily 

overwhelmed by the large satellite reception footprints and the increasing numbers of 

AIS transceivers, resulting in message collisions, which the satellite receiver cannot 

process. Schemes such as the TDMA were designed for successful ship-to-ship or 

ship-to-shore communication, not for shipto-satellite communication which heavily 

degrades their efficiency[17]. However, in the case of the satellite segment of the AIS, 

the efficiency of implemented access schemes is heavily degraded due to the high 

ratio of the AIS packets collisions.  
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Figure 4. SAT field of vies and AIS self organising cells  

II. Additionally, according to the AIS specifications, Class A transceivers reserve their 

time slots for transmission via Self Organized Time Division Multiple Access 

(SOTDMA). After performing a scan to ascertain which slots have already been 

reserved by other vessels, they reserve an empty slot. The device lets nearby AIS 

devices know that it intends to use this slot for future broadcasts. On the other hand, 

Class B transceivers are permitted to transmit via Carrier Sense Time Division 

Multiple Access (CSTDMA). Unlike SOTDMA, slots are not reserved. They instead 

simply scan for available space and transmit when a free one is determined to be 

available. Transmission priority is given to Class A transceivers which use SOTDMA 

since they reserve time slots. The timing of Class B transmissions via CSTDMA must 

work around the time slots reserved by Class A transceivers. If a Class B transceiver 

is unable to find an empty space, their transmissions are delayed.  

III. Furthermore, Class B and Class A transmitters fitted aboard vessels have a critical 

difference which also affects Satellite reception. According to the ITU specifications, 

provision should be made for two levels of nominal power (high power, low power) 

as required by some applications. The default operation of the AIS station should be 

on the high nominal power level. The two power settings should be 1 W and 12.5 W or 

1 W and 5 W for Class B “SO”. Evidently, the weaker signal of Class B devices means 

it is more difficult to receive these signals from space.  

Additionally, Sat AIS cannot capture at once the signal of all transmitting vessels; several orbits 

are required in order to capture a representative density sample. In previous studies [1] the 

data compilation approach for acquiring information relevant to vessel-population, was based 

on the generation of vessel position ‘snapshots’ in a specified time window. As the duration of 

this window increases, the amount of information gained in terms of distinct vessels, newly 

detected by the available sensors, tends to decrease. 
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Figure 5. Issues affecting Sat AIS reception 

On the other hand, coastal reception from the terrestrial receivers is only possible if a vessel 

is within the line of sight or approximately 40 NM in ideal conditions, affected by bad weather 

and other conditions[18].  

Besides its limitations, AIS remains the go-to-source of data for understanding maritime 

activities and for this several works have focused on identifying the issues[18]–[20] and 

developing techniques that improve the existing AIS by offering better tracking accuracies and 

guarantees.  

Definition (Incomplete Trajectory): Given the sparse spatial data p0(x0,y0,t0), p1(x1,y1,t1), 

p3(x3,y3,t3), p5(x5,y5,t5), p7(x7,y7,t7), p8(x8,y8,t8) of a moving ship, consisting of its time stamped 

locations, the resulting trajectory can be defined as  

∑ 𝑡𝑟𝑎𝑗2 = 𝑝0𝑝1, 𝑝1𝑝3, 𝑝3𝑝5, 𝑝5𝑝7, 𝑝7𝑝8 

It must be noted that ∑ 𝑡𝑟𝑎𝑗1 ≠ ∑ 𝑡𝑟𝑎𝑗2 

The aim of all techniques presented in the following section is to reduce the difference 

between the two trajectories so that  

=∑ 𝑡𝑟𝑎𝑗1 - ∑ 𝑡𝑟𝑎𝑗2 

3.3 Density maps  

To support improved understanding of this data, density maps are commonly used as an 

information visualisation method. The added value of density maps is that they support a bird’s 

eye understanding of vessel traffic, through providing an overview of vessel behaviour either 

at a regional or global scale.  

The term “vessel density” has several connotations and thus is used with several meanings in 

this domain. Therefore, vessel density can refer to 

1. the average number of vessels detected within a defined geographical area (spatial 

grid) in a given timeframe; 

2. the average number of crossings within a defined geographical area (spatial grid) in a 

given timeframe (often also referred to as “vessel traffic density”); 
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3. the total vessel presence times within a defined geographical area (spatial grid) in a 

given timeframe; 

There is a considerable difference in the methods used for the creation of density maps 

according to the definition used, including calculations based on the number of vessel 

positions detected, the number of vessel tracks, their length crossing a given area and many 

more variations.  

The European Marine Observation and Data Network (EMODnet) enables analysis of this 

impact by disseminating monthly information on vessel positions on a 1km by 1km grid. It 

distinguishes between vessel use - cargo, dredging or underwater operations, high-speed craft, 

fishing, military and law enforcement, passenger, pleasure craft, sailing, service, tanker, tug 

and towing, other, unknown.  

The EMODnet method used for density maps, consists of “reconstructed ship routes (lines) 

from the ship positions (points), by using a unique identifier of a ship. A line is created for every 

two consecutive received positions of a ship. For each line, length and duration (note that it is 

possible to calculate duration because each AIS message comes with a timestamp) are 

calculated and added as attributes. The lines obtained can then be intersected with a cell 

representing a unit area. Because each line has length and duration as attributes, it is possible 

to calculate how much time each ship spends in a given cell over a time period by intersecting 

the line records with the cell.” [14]. In the EMODnet method, density is expressed in hours per 

square kilometre per month, since vessel trajectories are reconstructed from received position 

points3. This method assumes that there is a unique identifier available for each vessel. On the 

other hand, EMSA’s density maps count the number of routes that cross each cell of the same 

grid.  

  

 
3 Throughout this text we refer to “density maps” as constructed by applying the EMODnet method, unless 

otherwise stated.  
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3.4 Data sources and raster-based spatial analysis  

ABSTRACT  

A fundamental activity associated with spatial analytics involves the reconciling of 

multiple data sources to the same or compatible geo-referenced locations[21]. In 

determining the fitness of a dataset for further analysis, we must homogenise available 

datasets across a common coordinate space, so as to be able to perform a comparative 

in-depth analysis of available sources. Towards this direction a common method is raster 

or grid-based analysis. The introduction of a grid-analysis frame provides a framework for 

storage and processing of different spatial datasets across a common base. Its base 

spatial unit is a “cell” defined by the column and row coordinates of an imaginary grid 

superimposed over an area. The grid cell and is used to statistically characterize[22]:  

• points as individual cells, 

• lines as connected sets of cells, 

• polygons as all cells identifying the edge and interior of discrete parcels 

• a surface as all of the cells within a project area with a value assigned to each that 

indicates the presence by feature type (discrete object) or the relative variable response 

(continuous gradient). 

Raster operations performed on multiple input raster datasets generally output cell values 

that are the result of computations on a cell-by-cell basis. The value of the output for one 

cell is usually independent of the value or location of other input or output cells. 

The rest of this section describes the steps taken towards creating a common coordinate 

space (grid), used for the subsequent analysis and the methods used for transforming 

each dataset into geospatial resources, describing ship detections that can be used for 

the spatial analysis. Specifically, this section describes the work conducted in “Task 1 

Software development and evaluation for assessment of marine waters” and subtasks 

“[T1.1] Acquisition and processing of AIS data” and “[T1.2] Vessel detection from 

spaceborne optical and SAR images”. 
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4. Data sources used in this study  

The data used in this study involves 

• Automatic Identification System data from terrestrial, satellite and roaming stations. 

This dataset covers the months from the 5 October 2021 until the 31 of December 

2021 

• EO imagery optical (Sentinel-2) and SAR (Sentinel-1 images). We outline a process 

which will convert these images into sets of vessel detections for further analysis.  

4.1 Area of interest  

The consortium was mandated to create vessel density maps for European waters thus Baltic, 

Black, Irish, Mediterranean, North East Atlantic and North Seas. The study regions cover both 

high and low density areas, areas for which Ter AIS, Sat AIS and EO datasets could be obtained. 

An extend based on the EU Coastline is used (see Figure 6)4. This bounding box is used to 

select data from the MarineTraffic Global Dataset of Terrestrial and Satellite AIS. Only data 

contained within this bounding box is then used for the analysis. 

 

Figure 6. Geometry extent of area of interest. Seas (BAL, BLK, MED, BAR and 
ATL) are presented using different colors. 

 
4 The geometries regarding the EU Coastline are provided by the European Environment Agency and 

can be found in the following address: https://www.eea.europa.eu/data-and-maps/data/eea-coastline-
for-analysis-2]. 
 

https://www.eea.europa.eu/data-and-maps/data/eea-coastline-for-analysis-2
https://www.eea.europa.eu/data-and-maps/data/eea-coastline-for-analysis-2
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4.2 Creating a common grid 

In order to perform the raster or grid based spatial analysis, the area of interest is partitioned 

into square cells of equal size (in meters), creating a corresponding grid; each grid is 

characterised by the edge length of its cells. While we focus on the European seas, we are able 

to work on the EPSG:3035 projection system [Footnote: see https://epsg.io/3035 for more 

information.]. Although this projection system allows for easier navigation through the data 

and area partition, an additional step of removing all cells that do not include any water areas 

further improves the performance of our approach. The grids are created in several 

resolutions. The final grids for most lengths (i.e. 1km, 10km, 100km, 200km and 500km) can 

be seen in the following figure. 

 

Figure 7. A separate grid is generated according to the size of each cell’s edge 
length. Only cells that cover a sea area are kept in the final grid. 
Grids for edge length of 10km (purple), 100km (pink), 200km (green) 
and 500km (yellow) are presented. 

https://epsg.io/3035
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Figure 8. The grid cells that cover the area around the UK; cells of length 500, 
200 (top), 100 and 10km (bottom) are presented.  

4.3 Transforming the datasets  

Transformations are simple methods of spatial analysis that convert the datasets by 

combining them or comparing them to obtain new datasets and eventually new insights. 

Transformations use simple geometric, arithmetic, or logical rules, and they include operations 

that convert raster data to vector data or vice versa. They may also create fields from 

collections of objects or detect collections of objects in fields[23]. In the following sections we 
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describe the work conducted towards transforming Ter AIS, Sat AIS and EO into a 

homogeneous format for further analysis.  

4.3.1 AIS Transformation  

4.3.1.1 Pre-processing and cleaning  

As previously stated, trajectories are never perfectly accurate due to sensor noise and other 

factors. Removing erroneous and unnecessary messages from AIS datasets is a crucial 

component for further analysis of maritime movement. Several filters are implemented to 

smooth the noise and potentially decrease the error in the measurements.  

These data come from different sources, either a satellite provider or terrestrial stations, 

resulting in multiple datasets. A two-step pre-processing is performed on each dataset. First, 

the positional data are merged with the corresponding static information regarding the vessel 

in question. Designed for a decoded input, our method matches the AIS positional data with 

the most recent vessel information needed. Static information appended at the end of each 

positional message includes the vessel type (e.g., cargo, tanker, passenger) and the vessel 

class (‘A’ or ‘B’). 

Secondly, after merging the data, we proceed with the main part of our preprocessing, that 

follows criteria similar to EMODNET’s approach for creating density maps[14]. These criteria 

refer to both features regarding the positions of the messages, as well as its movement fields. 

More precisely the filters applied to each input message are the following: 

1. Empty fields: messages that monitor movement, like the AIS messages, may include a 

plethora of features. Besides primary features (positional and temporal features) that 

denote the exact position of the moving vessel, other fields regarding its 

characteristics or its current state are usually provided. For the purpose of effectively 

analysing the input data, we require that each positional message includes non-empty 

values in the following fields:  

● Positional fields: 

o Vessel Longitude. 

o Vessel Latitude. 

o Timestamp of AIS occurrence (expressed in UNIX time in milliseconds). 

● Movemend fields: 

o Vessel Speed-over-Ground (SoG), measured in knots. 

o Vessel Course-over-Ground (CoG), measured in degrees. 

 

2. Invalid movement fields: While most messages include the aforementioned fields 

regarding a vessel’s movement (SoG, CoG), in some instances these fields carry invalid 

values. In such cases, the messages are characterised as erroneous and are discarded. 

The thresholds indicating valid movement for each filter is as follows: 

● Speed-over-Ground: real number between 0 and 80 knots, 

   SoG ∈ [0.0, 80.0] 



- 25 - 
 
Studies to support the European Green Deal - Lot 2 | “Vessel density” 

● Course-over-Ground: real number between 0 and 360 degrees, 

   CoG ∈ [0.0, 360.0) 

 

3. Invalid vessel ID: With each AIS message referring to a single vessel, a field dedicated 

to its identification is needed. The Maritime Mobile Service Identity (MMSI) convention 

is widely used while referring to AIS transmitters (i.e. vessels), with each single entry 

being a series of (9) characters. Moreover, a list providing some exceptions of invalid 

MMSI numbers is provided below. Messages whose MMSI does not follow these two 

criteria are discarded. 

MMSI exceptions 

000000000, 111111111, 222222222, 333333333, 444444444, 555555555, 666666666, 777777777, 

888888888, 999999999 

123456789, 0.12345, 1193046 

Length more or less than 9 characters 

 

4. Areas of interest: While our approach may be applied regardless of the area in question, 

defining the space of reference is a crucial part for moving forward for two reasons: 

● Removing data that refer to areas outside the purpose of the execution scenario. 

● Removing data that include erroneous coordinates, i.e. not valid longitude / latitude 

or points on land. 

5. Downsampling: Although the frequency where each vessel is transmitting a positional 

message is usually desired to be as high as possible, having too many messages may 

result in considerable delays while processing. In order to overcome this issue, 

downsampling is performed upon the input data. The question at this point is whether 

we are able to disregard some sample points without sacrificing the quality of the 

trajectory data required for the target application. For this purpose, the trajectories are 

filtered so that consecutive messages from the same vessel have at least (3) minutes 

between them, thus losing as little information as possible while at the same time 

getting rid of a great amount of data.  

6. TIme-frame: Restricting the time-frame where AIS messages are to be included in the 

end result may be useful for creating a custom dataset for analysis and removing 

messages with erroneous timestamps, due to noise. Additionally, it can be used for 

excluding messages referring to a time before the dataset’s specifications, caused by 

delays during their transmission. 

7. Noise-filter: In some cases, consecutive AIS messages of a single vessel indicate an 

invalid transition between two points[24], [25]. More precisely, if the distance between 

consecutive messages is large that it wouldn’t be possible for a vessel to cover in the 

corresponding time frame, this transition is considered noise in our data and the 

second AIS message is removed. A transition is considered to be improbable if the 
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calculated speed for the vessel to cover the distance in question exceeds the threshold 

of 92 km/h (approximately 50 knots). 

8. Insignificant tracks: All data regarding vessels that have less than 10 AIS messages 

after the merging step of our pre-processing are discarded. 

For this study, we performed cleaning upon all input data using all the filters mentioned. As a 

result, for the Terrestrial AIS (Ter AIS) 98.16% of the messages were removed; with 78.07% for 

the Satellite messages (Sat AIS) accordingly. The effect each filter had on the end results can 

be seen in following Figure 9: 

 

Figure 9. Statistics for data cleaning of Ter  AIS and SAT_AIS  

Most of the aforementioned criteria require some parameters whose value we have manually 

selected,. In the public release of the software the user can selected these values arbitrarily. 

Although the input messages are using the longitude/latitude (4326) projection system, a 

transformation to the (3035) projection system is also performed for all messages. 

4.3.1.2 Output Data  

The output of the vessel detection task is a.csv file with the following information  

Column Description and notes 

TIMESTAMP Unix epoch in milliseconds where the AIS message occured 

MMSI Vessel unique identifier (id) 

LON Vessel longitude 

LAT Vessel latitude 
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X Vessel X-positioning - 3035 

Y Vessel Y-positioning - 3035 

HEADING Vessel heading ∊[0, 360) 

COURSE Vessel course over ground ∊[0, 360) 

SPEED Vessel speed over ground ∊[0, 80] 

NAVIGATIONAL_STATUS Navigation status according to AIS Specification, ∊[0, 15] 

TYPE 
Vessel type ∊[0,100]  

(other values indicate unknown/unregistered type) 

STATION Depending on Sat AIS, Ter AIS receivers 

CLASS ‘A’ or ‘B’, based on AIS type message received 

 

In terms of granularity and accuracy of the Ter AIS the figures below show the number of 

vessels detected daily for each sea (Figure 10) and the number of total positions received each 

day (only for CLASS A).  

  

Figure 10. Number of unique ships detected daily for each sea (7 -days moving 
average). 

https://api.vtexplorer.com/docs/ref-navstat.html
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Figure 11. Number of positions received per day for each sea (7-days moving 
average). 

4.3.2 Transformation of EO images  

This task involves the operations of acquiring EO imagery, processing and detecting annotated 

vessels. 

In the related literature, the problem of vessel detection in satellite imagery has been the focus 

of many academic and industrial research activities. These activities can be classified into two 

broad categories: (a) The approaches that are based on the employment of thresholding-

based algorithms, such as the CFAR algorithm[26] (especially for SAR imagery, such as the 

JRC tool SUMO and others[27]), and (b) AI-based approaches that employ Neural Networks in 

order to detect vessels based on trained models[28]. [29] presents a detailed, up-to-date 

overview of approaches for vessel detection in optical imagery covering both categories. The 

processing chain that we used to perform vessel detection in satellite imagery for the needs 

of this project is based on our previous work, that belongs to the AI-based category and is 

partially covered in [30]. However, in order to address the known scalability problems that 

come with the use of NNs in large volumes of satellite data[31], we further extended our 

approach described in [30] and developed a hybrid approach that employs both threshold-

based mechanisms and CNNs, in order to get the best of both worlds: High accuracy results 

provided by CNNs while addressing scalability issues by using thresholding to filter out 

redundant image tiles. Part of the work described in this section is covered in a recent 

publication [32]. 

A high level overview of the technology stack developed for vessel detection in satellite 

imagery is given below 



- 29 - 
 
Studies to support the European Green Deal - Lot 2 | “Vessel density” 

 

Figure 12. The EO detection high level workflow  

In the rest of this section, we describe our approach for vessel detection in optical (Sentinel-

2) and SAR (Sentinel-1) images. A high-level overview of our system that automatically detects 

vessels in satellite imagery is depicted in the figure provided above. It consists of the following 

components: 

4.3.2.1 Data acquisition 

We acquire Sentinel-1 and Sentinel-2 data from the Copernicus open access hub using the 

SentinelSat python API5. We also use the Alaska Satellite Facility repositories for Sentinel-1 

imagery6 as a back-up repository. We download Sentinel-1 and Sentinel-2 data per month in a 

rolling way, starting from October 2021. For Sentinel-1 data, we download IW GRD products 

coming from both S1A and S1B satellites, and for Sentinel-2 data, we download all bands 

available for S2A and S2B products. 

4.3.2.2 Pre-processing 

After we download the satellite images, we have to preprocess them. Since optical images are 

very different from SAR images, we perform different pre-processing steps for each kind of 

imagery. For SAR imagery, we perform corrections, such as converting SAR geometries to geo-

referenced geometries using GDAL tools in python (e.g., gdalwarp). SAR images come as 

single band images, while Sentinel-2 images come in RGB bands together with an infrared (IR) 

band, in three different resolutions: 10m, 20m and 60m. For Sentinel-2 images, we stack the 

RGB and the SWIR bands together and we compose a panchromatic image in the GeoTIFF 

format, using 16-bit encoding, and we perform pancharpening to increase its resolution.  

 
5 https://scihub.copernicus.eu 
6 https://asf.alaska.edu 
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The panchromatic image has been created by computing the average of all the 10m resolution 

bands, that is RGB and NIR in order to obtain a single high-resolution image. The aim of the 

pan-sharpening technique is to fuse the higher spatial information from the panchromatic 

image and the spectral information from a lower spatial information multispectral image. 

 A true colour image (TCI) in 10m is readily available in a Sentinel-2 image directory, however, 

we prefer to compose the panchromatic pan sharpened image using the individual bands since 

the TCI image comes in 8bit encoding, which is lossy. Maintaining a 16-bit encoding will be 

crucial for the filter stage which follows.  

TILING 

After we have pre-processed the images, we divide them into smaller tiles in order to be further 

processed more easily. The dimensions of the tiles are currently 256x256.  

FILTERING 

Since we use an AI-based approach for detecting vessels in satellite imagery, i.e., we use a 

neural network, feeding thousands of satellite images which correspond to several TBs of data 

into the network can turn it into a serious bottleneck and it will compromise the performance 

and applicability of our approach in a density maps use case, in which thousands of satellite 

images need to be processed. Thus, we filter out the image tiles which are redundant, i.e., for 

which we have indications that they do not contain vessels before we feed them to the neural 

network. For example, a Sentinel-1 tile that is totally black depicts the sea and no object 

appears in it. For Sentinel-1 image tiles, we use statistics and thresholding (i.e., amount of 

black/white pixels), while for Sentinel-2 image tiles, we use thresholds that are based on the 

difference of pixel values between the red band and the infrared band (R-SWIR). We also use 

the ACL as a mask to filter out clouds.  

Eventually, the filtering step results in image tiles sizing up to at least one order to magnitude 

less than the size of the original image. 

4.3.2.3 AI-based vessel detection 

For the vessel detection task, we trained a neural network based on the state-of-the-art vessel 

detection framework YOLOv4, with vessels detected in satellite images, using AIS data as 

ground truth. Since we also want to detect the precise location of vessels, we used an object 

detection framework instead of a simple CNN. The object detection framework deploys a CNN 

per image pixel and determines the bounding box of the detected object. Our trained model is 

able to detect vessels with 92% accuracy as shown in the experiment results provided in Table 

2. 

Metric Value 

Precision 92% 

Recall 93% 
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F1-score 92% 

True Positive (TP) 80% 

False Positive (FP) 7% 

False Negative (FN) 6% 

Table 2. Vessel detection experiment results using 400 semi -manually 
labelled sentinel-1 and sentinel-2 satellite imagery. 80% of images in 
the benchmark dataset were used as training set and 20% of the 
images were used as test set.  

4.3.2.4 Post-processing 

The output of the vessel detection task is a.csv file with the following information: (a) the 

bounding box of the detected vessel (with respect to the centre of the image), (b) the class of 

the detected object (e.g., vessel, tanker, etc.), (c) and a confidence value that indicates the 

possibility of the detected object belonging to the detected class. In a post-processing task, 

we (i) retain only the detections with high-confidence (> 0.6), and we geo-reference the 

coordinates of the detected objects by transforming them from topological coordinates to 

geo-referenced coordinates, so that they can be correlated with the respective AIS 

coordinates. The output of this task is a.csv file per image that contains the image tile that the 

detected object belongs to, its geo-referenced location (the geo-referenced centre of its 

bounding box), and the timestamp, which is the acquisition time of the image. We produce 

one.csv file for every detected vessel and one.csv file per vessel type (e.g., Tanker, Cargo and 

Tug for Sentinel 1 imagery). All .csv files that are produced as output of this step follow the 

format described in Table 3.  

Column Description  

path The path of the actual image tile in which the object (vessel) was detected 

confidence Confidence of detection  

lon Vessel longitude (calculated)  

lat Vessel latitude (calculated) 

timestamp 
Textual datetime representation of detection time in UTC (acquisition time of 

the satellite image that was used to detect the vessel)  

Table 3. Format of post-processed satellite image detections 
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4.3.2.5 Data fusion 

After we detect vessels in satellite images, we correlate this dataset with the respective AIS 

positions acquired by MarineTraffic. The correlation task involves the following steps:  

● Spatio-temporal filtering.The temporal resolution of satellite images is significantly 

lower than the temporal resolution of AIS messages (i.e., the revisit time of Sentinel satellites 

is 2-3 days in high coverage areas whereas vessels with AIS transponders transmit AIS 

messages every few seconds or minutes, depending on their navigational status and speed). 

In order to be able to correlate these two data sources, for every image, we extract all AIS 

positions that are located into the area covered by the image during a 1-hour time window, 

spanning 30 minutes before and after the image acquisition time. For the filter, we create a 

temporal index on the geo-dataframe where we load all AIS positions, filtering out all positions 

that fall out of the time window and then we perform spatial joins that retains only the positions 

that are covered by the spatial extent of the image.  

● Interpolation. Then, we create trajectories for each vessel contained in the dataset. For 

each trajectory, we retrieve the position of the vessel at the time the image was acquired by 

interpolating the vessel’s locations before and after the acquisition time of the image. The 

output of this step is a snapshot of all AIS vessel positions which spatio-temporally intersect 

with the image. More specifically, we produce a.csv file for each image storing the position of 

every vessel located in the spatial extent of the image footprint at the time the image was 

acquired.  

● Fusion. The fusion task matches the interpolated AIS-positions of the previous step 

with the vessels detected in the image that are the output of the vessel detection step and the 

post-processing step. Since the AIS dataset contains an identifier for each vessel, the fusion 

task assigns each detection to a vessel position. We perform a KNN-join between the two 

datasets in the following way: For each vessel detected in a satellite image, we search for the 

nearest AIS neighbor (i.e., nearest interpolated position of a vessel). To achieve this, we store 

the interpolated positions that are the output of the previous step in a KD-Tree in order to speed 

up the distance joins. Vessels detected in satellite images that do not have matching AIS 

detections, given a distance threshold, are considered as “dark vessels”,i.e., they are either 

located in a low coverage area or they have intentionally switched off its transponder. For each 

image, the fusion step creates the following files: 

a) A.csv file that contains the “dark vessels”, i.e., the vessels detected only in the satellite 

image 

b) A.csv file that contains the “matched vessels”, i.e., the vessels that were detected both 

in AIS and satellite imagery.  

c) A.csv file that contains the “AIS-only vessels”, i.e., the vessels that were only detected 

in AIS. A vessel can only be visible via AIS and not in a satellite image due do the 

following reasons:  

I. The resolution of Sentinel-1 and Sentinel-2 imagery does not allow for the 

detection of small vessels with high confidence. 

II. The AIS position of the vessel might be wrong. Since AIS is a collaborative 

maritime reporting system, a vessel’s crew might alter the GPS position of the 

vessel when transmitting the AIS messages (e.g., spoofing).  
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III. Interpolation error: When the AIS messages that we have around the acquisition 

time of an image transmitted by a vessel are not enough, and the vessel has 

changed its navigational status in the meantime (e.g., a vessel suddenly stops 

or it accelerates and changes heading), the estimated position of the vessel in 

the interpolation step might differ considerably from the actual position of the 

vessel. 

Vessel detection examples 

In the following, we provide some examples of the vessel detection workflow in Sentinel-1 and 

Sentinel-2 images of October 2021. Each image tile is annotated with the confidence of vessel 

detection. In a post-processing step, we only keep the detections with threshold > 0.6. The 

model was trained on 2019 data and it is able to distinguish vessels from (i) clouds (in the 

case of Sentinel-2), waves (ii), and (iii) land parcels. In the first row of the set of images that 

are provided below, we show some positive examples. In the second row, we show some 

examples that are either true negative (no detection) or false positive, but below the 

confidence threshold that we have set. One of the advantages of the DL-based methods is that 

the model can be trained to detect vessels regardless of the background in contrast to the 

threshold-based methods. This is mostly highlighted in the optical (Sentinel-2) images. 

 

Figure 13. Positive examples of vessel detection in 
Sentinel-1 tiles of October 2021 with high 
confidence (in most cases) 

 

Figure 14. True negative examples 
(a) and detections below 
threshold (< 0.6) (b) 

 

Figure 15. Sentinel-2 vessel detections with high confidence 
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Figure 16. Sentinel-1 Detections in MED sea during October 2021 

The figure provided above shows the vessels detected in the Mediterranean Sea during October 2021 using Sentinel-1 imagery. 
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5. Spatial Analysis and Comparisons 

ABSTRACT  

The objective of this task is to use the outputs of Task 1 and perform a qualitative and 

quantitative analysis in order to compare the computed vessel density per grid cell for 

each data source used. In general, raster data analysis is based on cells and rasters. 

Raster data analysis can be performed at the level of individual cells, or groups of cells, or 

cells within an entire raster. In our study we use both approaches so as to measure 

differences per cell but also in the entire region.  

This section reports on the results from “Task 2: Analysis” and specifically the work 

performed in the tasks: [T2.1] Comparison between vessel density results from Sat AIS 

and SAT imagery processing; [T2.2] Comparison between different AIS Receivers on 

satellites and [T2.4] Comparison with receivers mounted on board vessels and other 

offshore facilities.  

5.1 Comparison between different Ter AIS and Sat AIS  

In this section we assess the capabilities of Sat AIS and Ter AIS vessel detection systems, 

both quantitatively and qualitatively.  

Where possible we compare performance measuring,  

1. the number of unique vessels received in a defined time interval, both at a regional 

scale and across EU waters 

2. the average distance between two sequential AIS messages of a vessel for the three 

Sat AIS providers per day. 

3. the average distance between two sequential AIS messages of a vessel for Sat AIS 

and Ter AIS per day. 

These indicators specify in particular each platform’s capabilities in terms of capacity to 

detect the correct number of vessels in an area, but also the granularity of messages or 

detections. We must note, though, that due to differences in coverage it is not always possible 

to provide a 1-1 comparison for the entire study space, where possible we perform a per cell 

comparison. Additionally, we must note that comparisons are performed only on CLASS A 

messages. The capability of Sat AIS to identify a vessel strongly depends on the class of the 

device used. As seen in the table below, Sat AIS strongly underperforms in its capacity to 

detect CLASS B AIS.  

Thus, throughout the rest of the analysis we focus only on CLASS A AIS devices, as this is 

a known issue for Sat AIS, that otherwise would strongly affect the results.  
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Figure 17. Number of positions and ships detected for all sea by AIS class from 

5th October 2021 until 31 of December 2021. We present for each sea 

(ALT,BAL,BAR,BLK,MED) and for each  provider type ( all -ais, sat-all-

ais, ter-ais ) the distribution of AIS vessel classes  for the received AIS 

position reports and the number unique vessels detected. For 

example the distribution of vessel classes for all messages received, 

regardless the provider (all-ais), is  81.03% class A and 18.9% class B 

in terms of position reports and 66.22% class A and 33.78% class B in 

terms of unique vessel detected for the Atlantic Ocean area(ATL). 

The results of the computations are displayed in Figure 18 to Figure 24. The observed 

differences in the performance are closely linked to the different system concepts and design 

capabilities.  

In sum, 

• The comparison clearly indicates that terrestrial AIS detects a higher number of 

unique vessels across the given area with the exception of Barents Sea 

• In several cases unique vessels detected from Ter AIS are several orders of 

magnitude more.  

• The granularity and resolution of the TER_AIS dataset is much higher than that of Sat 

AIS both on a temporal and spatial scale.  

In sum, where Ter AIS is available, Sat AIS is a subset of the Ter AIS dataset. Since the results 

are heavily affected by the Ter AIS coverage, it is important to examine the data at a cell level, 

so as to better understand the differences. This is performed in Section 6, with the detection 

difference map. 

The brief interpretation of the data exemplifies the added value of combining datasets from 

both sources. 
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Figure 18. Detailed view of the 7 days average number of unique ships 
detected from each AIS provider for the Mediterranean Sea 
from 5th October 2021 until 31 of December 2021  

 

Figure 19. Detailed view of the 7 days average number of unique ships 
detected from each AIS provider for the Black Sea from 5th 
October 2021 until 31 of December 2021 
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Figure 20. Detailed view of the 7 days average number of unique ships 
detected from each AIS provider for the Barents Sea from 5th 
October 2021 until 31 of December 2021 

 

Figure 21. Detailed view of the 7 days average number of unique ships 
detected from each AIS provider for the Baltic Sea from 5th 
October 2021 until 31 of December 2021 
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Figure 22. Detailed view of the 7 days average number of unique ships 
detected from each AIS provider for the seas of North East 
Atlantic, Irish Sea and North from 5th October 2021 until 31 
of December 2021 

 

Figure 23. Comparison of average distance between two sequential AIS 
messages of a vessel for the three Sat AIS providers per day,  
time-series represent a 7 days moving average window.  
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Figure 24. Comparison of average time gap between two sequential AIS 
messages of a vessel for the three Sat AIS providers per day, 
time-series represent a 7 days moving average window.  
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5.2 Comparison between Sat AIS, Ter AIS and SAT EO  

The results of the computation are displayed in Figure 25 to Figure 27. 

The following figure shows a comparison between the number of vessels identified by Sat AIS 

providers and the number of vessels identified by Sentinel-1 for October 2021. For each 

Sentinel-1 image snapshot, we consider only the Sat AIS positions that were received 30 

minutes before and 30 minutes after the image was acquired and that their location was within 

the footprint of the image. We observe that the Sentinel-1 image detections outnumber the 

respective Sat AIS detections. A possible explanation for that is a combination of the following 

reasons: (i) Sat AIS messages may have been lost due to packet collisions, (ii) the detection 

of smaller vessels, that is a limitation of satellite images, is also a limitation for Sat AIS since 

smaller vessels that cannot be captured by Sentinel satellites typically bear class B 

transponders. During the interim review, we showed the results of our preliminary analysis that 

only covered the Mediterranean sea. In this final version of the report, we extended the analysis 

to cover the whole area of interest and the results are in good agreement to our initial analysis:  

Sentinel-1 detects more vessels than Sat AIS (due to class B) but less that Ter AIS.  

However, this is not always the case. Interestingly there are days when Sentinel-1 detects more 

vessels than terrestrial-AIS as well. This depends on the orbit of the satellite itself: Sometimes 

it visits places where terrestrial coverage is low  

We compared the coverage for each one of the two sources in the following way:  

For each image snapshot t, we compute the number of vessels that are detected by Sat AIS, 

NSAT-AIS(t), and the number of vessels that are detected by satellite images NEO(t), as well as the 

number of vessels that are seen by both satellites NSAT-AIS-EO(t). Then, the total number of vessels 

for snapshot t, denoted as NT, where NT = NSAT-AIS(t), + NEO(t) - NSAT-AIS-EO(t) 

We must note that a one-to-one comparison of the performance of all sensors can be 

misleading, due to coverage areas selected or traffic density in the region. Due to the 

orbits of the satellites and the temporal “snapshots” used for the analysis, it is not always 

possible to provide a 100% reference ground truth for comparisons.  
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Figure 25. Number of vessels detected via Sat AIS vs number of vessels detected using satellite images per day  vs Ter AIS for October 
2021 in the area of the Mediterranean sea. For the comparison, we only considered the Sat AIS and Ter AIS positions that 
were received 30 minutes before and after the acquisition time of the image and were located within the image extent.  
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Figure 26. Comparison of unique number of vessels detected via Sentinel -1 imagery vs Sat AIS vs Ter AIS (only AIS positions contained 
in the image temporal and spatial footprint were considered)  
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The figure above shows the number of vessels detected via Sentinel-2 compared to the 

number of unique class A vessels detected via Ter AIS and Sat AIS and Figure 27 performs the 

same analysis considering both class A and class B vessels. By comparing these two sets of 

figures to the previous one (about the Sentinel-1 analysis), we can make the following 

observations: First of all, it is obvious that the total number of vessels captured by Sentinel-2 

is considerably smaller than the number of vessels captured by Sentinel-1 during a one-month 

period. The number of vessels detected via AIS located in the footprint of the respective 

images is also considerably smaller. The reason for this is that (i) we only considered Sentinel-

1 images with no more than 10% cloud coverage, and (ii) filtered out all image tiles that 

contained clouds, so the Sentinel-2 cloud-less footprint is considerably smaller, leading to a 

smaller number of vessels detected by all sensors. However, despite the inherent cloud 

coverage issues of Sentinel-2, it can pick up more vessels compared to Ter AIS, unlike Sentinel-

1. This is because (i) Sentinel-2 offers images at better spatial resolution than Sentinel-1 and 

(ii) Sentinel-2 images are optical while Sentinel-1 images are radar images. These inherent 

features of Sentinel-2 imagery enables it to capture smaller vessels (e.g., high-speed vessels, 

pleasure crafts) that might not bear Class A transponders or no AIS transponders at all. This 

assumption is strengthened by comparing the results of the comparisons shown in and Figure 

27. The difference between satellite detections and Ter AIS detections is far smaller when both 

Class A and Class B vessels are considered: This demonstrates the ability of Sentinel-2 to pick 

up class-B vessels in many cases better than Ter AIS.  
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Figure 27. Class A and B vessels detected by Sentinel -2 vs Sat -AIS vs Ter AIS per day for November 2021 
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Summary 

The findings of the above analysis can be summarised as follows. First, Sentinel-2 imagery is 

a valuable source of information to capture smaller vessels (e.g., class B). In several 

conditions, both Sentinel-1 and Sentinel-2 can pick up more vessels than Sat AIS, due to Sat 

AIS known AIS packet collision problems in congested areas, as well as its limited capacity to 

monitor class B vessels.  

For the same reasons, Sentinel-2 often detects more vessels than Ter AIS, while Ter AIS 

outperforms Sentinel-1 in most cases. However, cloud coverage is a major limitation for this 

use case, as the cloud-free coverage that is offered by Sentinel-2 optical imagery is too limited 

to enable us to estimate the vessel traffic density at global scale, as we will see later on in this 

document. 
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6. Creating new sets of digital density maps 

ABSTRACT 

In this section we report on performed activities for the creation of the digital map 

outputs, including the trajectory reconstruction methods applied for the improvement of 

the end results.  

Overall map outputs are created in five different spatial resolutions and with different 

approaches to highlight different aspects of the analysis.  

This section reports on the results from “Task 3: Creating new sets of digital density 

maps” and specifically the work conducted in the subtasks “[T3.1] Creating density maps 

used in EMODnet”; “[T3.2] Vessel density maps using vessel density information acquired 

from satellite image processing”; “[T3.3] Corrected density maps with Sat AIS message 

collision elimination”; “[T3.4] Density maps showing the probability to avoid detection of a 

vessel” and “[T3.5] Corrected trajectories density digital maps”.  

6.1 Density maps using AIS  

For the map creation, we based our implementation on the current EMODnet method. 

Specifically, this process outputs a different density map for 14 vessel types, included in the 

EMODnet density maps, for the given areas of study and in five different spatial resolutions (1, 

10, 100, 200 and 500km). Table 4 presents the vessel category types, according to the code 

included in the AIS messages; each vessel corresponds to a single type. 

Vessel Type Categories 

Category AIS vessel type codes 

All all 

Cargo between and including 70 and 79 

Tanker between and including 80 and 89 

Dredging 

(Dredging or underwater operations) 
33 

HSC (High-speed crafts) between and including 40 and 49 

Fishing 30 

Military_Law  35 and 55 
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(Military and law enforcement) 

Passenger between and including 60 and 69 

Pleasure (Pleasure crafts) 37 

Sailing 36 

Service 50, 51, 53, 54, 58 

Tug 

(Tug and towing) 
31, 32, 52 

Unknown in case a vessel type code is not provided 

Other otherwise 

Table 4. Vessel type categories. 

The density is extracted by calculating the cumulative interval that the vessels in question 

spent within each cell. For this purpose, trajectory segments are created from the cleaned AIS 

data; a segment is created for each pair of consecutive messages of the same vessel. During 

these segments the vessel is considered to follow a linear path. As already mentioned, this 

approach may be considered accurate for relatively small time intervals and short distances 

but cannot be used universally. Thus, segments that originate from AIS intervals larger than 6 

hours or have a length larger than 30km are labelled “lossy” and annotated for the 

reconstruction process. Following this, each segment is split according to the grid and the 

respective time for each cell is computed. Figure 28 provides an example of this process for 

the trajectory of a vessel. 

 

Figure 28. The density calculated from a vessel’s positions ( 𝑝1 ⇒ 𝑝2 ⇒ 𝑝3 ⇒ 𝑝4). 
For the first segment (𝑝1 ⇒ 𝑝2) the full time-interval is assigned to a 
single cell, since the vessel stays within its borders. For the secon d 
segment (𝑝2 ⇒ 𝑝3), a line split is performed so that the corresponding 
sub-segments are assigned to four cells in total. Lastly, the third 
segment (𝑝3 ⇒ 𝑝4) does not provide any additional measurements 
since the distance between its confines is too large . 
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EMODNET’s colour palette was used for the creation of the final maps, with the density 

thresholds (hours per square km per month) adjusted for sizes other than 1km, as seen in 

Table 5. The end results are saved as TIFF files.  

Density Maps Colours 
Difference 

Maps 
Cell size 1km 10km 100km 200km 500km 

Colours 

(h / cell 

per month) 

      

Table 5. Density maps colour palette. 
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Considering all five resolutions, the two categories of data sources (Ter AIS and Sat AIS) and 

the 14 different vessel types, 420 TIF files were produced for all three months (October, 

November and December 2021). An indicative sample is presented in Figure 29 to Figure 36. 
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Figure 29. Density map based on Sat AIS, for 
all vessel types, using a resolution 
of 500km, for the month of 
October. 

 

Figure 30. Density map based on Sat AIS, for 
all vessel types, using a resolution 
of 200km, for the month of 
October. 

 

Figure 31. Density map based on Sat AIS, for 
all vessel types, using a resolution 
of 100km, for the month of 
October. 

 

Figure 32. Density map based on Sat AIS, for 
all vessel types, using a resolution 
of 10km, for the month of October.  

 

Figure 33. Density map based on Ter AIS, for 
all vessel types, using a resolution 
of 10km, for the month of 
November. 

 

Figure 34. Density map based on Ter AIS, for 
fishing vessels, using a resolution 
of 10km, for the month of 
November. 
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Figure 35. Density map based on Ter AIS, for 
tug and towing vessels, using a 
resolution of 10km, for the month 
of November. 

 

Figure 36. Density map based on Ter AIS, for 
military and law enforcement 
vessels, using a resolution of 
10km, for the month of November.  
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Furthermore, in order to visualise the difference between satellite and terrestrial AIS 

messages we created maps that carry such information upon each grid cell (for all grid 

edge lengths and vessel types). More precisely, in each grid cell we calculated the 

difference percentage between the alternative sources according to the following formula: 

𝑑𝑝𝑒𝑟𝑐 =  100 ∗  
𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑇𝐸𝑅  −  𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝐴𝑇

𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑇𝐸𝑅  +  1
 

where, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑇𝐸𝑅  and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝐴𝑇 are the density values, calculated according to previous 

steps, for the terrestrial and satellite AIS datasets accordingly. Note that, we added a single 

millisecond in the denominator so that no infinite values were extracted in case terrestrial 

data didn't occur in a single cell. 

Afterwards, we categorise each cell according to its 𝑑𝑝𝑒𝑟𝑐 and generate the map of 

difference, using the colours depicted in Table 6. In these maps blue and purple colours 

indicate areas where Sat AIS have larger density values; yellow and red point to larger Ter 

AIS densities, while green indicates equal values from both sources. Some examples of the 

end results using a resolution of 10km are presented in the following Figures. 
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Figure 37. Density map based on Ter AIS 
(top), based on Sat AIS and the 
corresponding difference map, 
for all vessel types, using a 
resolution of 10km, for the 
month of December. 

 

Figure 38. Difference map, for passenger 
vessels, using a resolution of 
10km, for the month of 
December. 

 

Figure 39. Difference map, for tanker 
vessels, using a resolution of 
10km, for the month of 
December. 

 

Figure 40. Difference 
map, for cargo 
vessels, using 
a resolution of 
10km, for the 
month of 
December. 
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6.2 Density maps using EO data  

In this task we create density maps based on the EO detections. More specifically, we execute 

the following steps:  

1. We map the vessels detected in satellite imagery for each month to a grid. We use 

grids of different resolutions: 1m, 10m, 100m, 200m, and 500m resolution. We create 

a set of density maps for each grid, so we compute the number of vessels located in 

each grid for each one of the aforementioned resolutions. 

2. We create two different kinds of density maps: First, we visualise the density of all 

vessels detected in satellite images. Then, we also visualise the density of all dark 

vessels detected in satellite images, i.e., vessels that were only detected in satellite 

images without matching AIS positions. This set of density maps will help us identify 

“dark” areas (e.g., grid cells) with increased traffic of “dark” vessels, which can either 

be areas of low AIS coverage or areas associated with illegal activities (e.g., 

sanctioned areas). 

Using Sentinel-1 and Sentinel-2 vessel detections, we produced two sets of satellite-based 

density maps for the following resolutions: 10km, 100km, 200km, and 500km (all included in 

the deliverables). Some examples are provided below. Figure 41 shows the Sentinel-1 density 

map for October 2021 (10km cell size). Figure 42 shows the density map using Sentinel-2 data 

for the same resolution. The cloud coverage problem is obvious in the case of Sentinel-2, which 

makes this data source unsuitable as a single source of vessel tracking data. However, it can 

be used as a complementary source.  

Density Maps Colours 

Cell size 10km 100km 200km 500km 

Colours 

(number of 

detections) 

    

Table 6. Density maps colour palette (satellite imagery detections).  
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Figure 41. Vessel traffic density map using Sentinel -1 image detections for 
October 2021 (density metric: number of vessels) 

 

Figure 42. Density map (10 km) of vessels detected using sentinel -2 imagery for 
November 2021  
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We can observe that even in Sentinel-1 there are significant gaps in coverage, especially in 

areas far away from the coastline. This is a known issue of both ESA and also some 

commercial satellites. For example, the Sentinel-1 October orbits can be seen in Figure 43 and 

Figure 44 demonstrating limited coverage in the high seas.  

 

Figure 43. Sentinel-1 orbits in October 2021 

 

Figure 44. Sentinel-1 artic coverage 
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Figure 45. Dark vessel density map using Sentinel-1 images from October 2021 
in the MED area (1:10000 grid resolution) 
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6.3 Density maps of dark areas  

Figure 46 shows the density of dark vessels in the Mediterranean sea using Sentinel-1 data 

correlated with AIS data. Darker red cells correspond to higher density of dark vessels. We 

observe that many of these dark red cells correspond to higher vessel density in general, so 

the dark vessel density might be due to AIS packet collision 

 

Figure 46. Dark vessel density maps for the Mediterranean sea based on 
Sentinel-1 vessel detection (Grid cell: 10 km)  
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Figure 47. Dark vessels during October 2021 detected via Sentinel 1 imagery 
correlated with Sat AIS data 

To differentiate between low AIS coverage due to packet collision and intentional switch-off 

of AIS transponders, we performed an analysis described in this section, which is based on 

identifying areas (e.g., grid cells) where vessels are in close distance, thus increasing the risk 

of losing AIS packets due to congestion.  

To achieve this, we applied the following formula to different snapshots of Ter AIS data (we 

used the same snapshots of the respective Sentinel-1 images used to identify dark “cells”): 

𝑁𝑁𝐷  =
∑ 𝑁𝑁𝐷

𝑛
 

NND: Nearest neighbour distance 

N: Number of vessels  

For each grid cell, we calculated the mean nearest neighbour distance, i.e., the mean distance 

between a vessel and its neighbours. This metric indicates that the lower the mean distance 

between neighbouring vessels is, the higher the risk of congestion. Thus, we define the 

“detectability” maps as the maps that showcase congested areas that might lead to 

detectability issues. We constructed detectability maps for the Mediterranean Sea and the 

whole area of interest (Figure 50).  
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Figure 48. Detectability map for MED using October 2021 Ter AIS data 
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Figure 49. Detectability map for the Mediterranean 
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Figure 50. Detectability map for the European seas using Ter AIS October 2021 
data. Darker colours correspond to higher probability to avoid 
detection. 

6.4 Density maps combining Sat AIS & EO data 

After producing the dark vessel density maps, as explained in the previous section, we used 

this information to complement the Sat AIS based density maps. Figure 51 shows the density 

map for October 2021 produced by using only Sat AIS data (number of positions/cell) and 

Figure 52 shows the respective density map of dark vessels for the same period. We consider 

only the dark vessels, and not all vessels detected by satellites for duplicate elimination (so 

that we don’t count the same vessel position twice) and using this combination of data 

sources (Sat AIS and Sentinel-1) we produce the combined density map shown in Figure 53. 

Reasonably, the combined density map resembles the Sat AIS density map shown in Figure 

51, as the limited revisit time of Sentinel satellites compared to the AIS message frequency do 

not allow for significant differences to be highlighted. However, looking at the combined 

density map more carefully, we can see that some areas that appear in orange/red in Figure 

51 appear slightly darker in Figure 53 (e.g., Gibraltar, Norway, Iceland, English Channel, etc.). 

This means that areas that are known to be dense using Sat AIS, are even more dense in reality. 
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Areas that are both of high Sat AIS density and dark vessel density are prone to Sat AIS packet 

collisions and although ESA satellites are limited by their low revisit time and coverage, they 

can still be used to highlight these areas, although the differences of the combined density 

map and the Sat AIS density map are not significant.  

 

Figure 51. Sat AIS density map (number of detections/cell) for October 2021 
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Figure 52. Dark vessels density map (number of detections/cell) for October 
2021 



- 66 - 
 
Studies to support the European Green Deal - Lot 2 | “Vessel density” 

 

Figure 53. Sat AIS & Sentinel-1 density map for October 2021 

 



- 67 - 
 
Studies to support the European Green Deal - Lot 2 | “Vessel density” 

6.5 Corrected trajectories density digital maps  

6.5.1 Trajectory Reconstruction Methods 

As previously noted, sparse AIS data are problematic for vessel movement analysis, since the 

reconstructed trajectories taken from the actual positional messages do not represent the 

vessels’ real paths. Tasks such as the creation of line-based density maps depend on the 

validity of the data and may in turn suffer in accuracy. 

Several works have proposed strategies for dealing with the imperfections of AIS data and 

specifically for completing or filling the gaps in trajectories. The majority of these works 

assume that at least in theory, the trajectory of a ship can be approximated as a straight line 

for a short time interval. Therefore, linear interpolation is the most widely used gap filling 

method [33]–[36]. Linear interpolation interpolates the latitude and longitude coordinates of 

the ship at a given interpolation time. However, this method is only suitable for small 

forecasting windows (e.g., several minutes), high frequency data, and in situations when the 

vessel is expected to follow uniform linear motion. Additional interpolation methods have been 

proposed, such as polynomial, cubic spline interpolation, Lagrange and Hermit interpolation 

methods which take into consideration additional features such as direction, heading and 

speed to reconstruct trajectories with curves[35], [37]. Unfortunately, though, the above 

methods do not take into account the environment or prior information regarding a ship travel 

area, while also showing degraded accuracy in scenarios where a ship conducts manoeuvers 

often (e.g. river).  

Several works have attempted to combine the methods above with the ship’s navigational 

status to improve results. Zhang et al. proposed a trajectory reconstruction approach 

considering the navigation states, namely hoteling, manoeuvering, and normal-speed 

sailing[38]. [39] applied both linear interpolation and cubic spline interpolation for straight and 

curve sub-trajectories respectively to reconstruct a new smooth trajectory. The majority of 

these approaches remain geometry-based approaches, unfortunately not making use of the 

kinematic information of the ship or historical information of the area, thus the accuracy of the 

results is limited[40].  

Recently several Machine Learning and AI driven techniques have appeared in the 

literature[35], [41]–[47]. The main idea being that historical data can be used to train a deep 

learning model which can then forecast future positions. In [42]convolutional neural networks 

are used to reconstruct AIS trajectories, while the proposed method is tested and compared 

with cubic spline interpolation. The results show that this method is capable of higher 

accuracy than the cubic spline interpolation, especially when the trajectories are curved and 

have a high loss rate. Unfortunately, the test results cover only a small geographical area. In 

[41]a Long Short-Term Memory (LSTM)-based supervised learning method is used to 

reconstruct the vessel trajectories, achieving good results in short term forecasts, without 

taking into account the environmental factors of ship sailing. Authors in [48] apply a deep 

learning method based on Bi-directional Long Short-Term Memory Recurrent Neural Networks 
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(BLSTM-RNNs) for trajectory restoration. Although in complex waterways such as the Yangtze 

River the method demonstrates higher accuracy than linear interpolation methods, the deep 

learning method comes with a higher computational cost although validated in a small region 

two distinct reaches (Chongqing and Wuhan) in the Yangtze River.  

In [46]a novel sequence-to-sequence vessel trajectory prediction model, based on encoder–

decoder recurrent neural networks (RNNs) that are trained on historical trajectory data to 

predict future trajectory samples given previous observations, is proposed. The suggested 

method showcases superior accuracy than baseline methods but relies heavily upon historical 

data of paths belonging to the same motion pattern of the test trajectory, i.e., a large and 

representative sample of data from the domain. The authors mention that this potentially 

limits the method’s applicability since it may be sensitive to the training dataset, in particular, 

the number of ship trajectories available and domain representativeness. It is important to 

note that the majority of these approaches focus on short term forecasting (e.g., several 

minutes) in a regional context and not full route forecasting at a global scale.  

Most current approaches to density map generation will simply remove interpolated 

trajectories with large missing parts due to the reconstruction difficulty[14], [41].  

 

 

Figure 54. Vessel movement close to Medan, Malaysia. When significant time 
gaps occur on the raw data (left), a simple interpolation may result in 
erroneous trajectories (right).  

The EMODnet method used for density maps, reconstructs ”ship routes (lines) from the ship 

positions (points), by using a unique identifier of a ship. A line is created for every two 

consecutive received positions of a ship. If the distance between two consecutive positions of 

a vessel was longer than 30 km or if the time interval was longer than 6 hours, no line was 

created.”. The interpolation method adopted, assumes that a straight line can be used to 

restore a trajectory when the course is steady, and the vessel is in linear navigation. 

sea 
Average 

Distance 

Maximum 

Distance 

50th 
percentile 

 

75th 
percentile 

 

90th 
percentile 

 

95th 
percentile 

 

ATL 20.2 43881.4 6 9.1 19.9 32 
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Table 7. Monthly averaged statistics for class-A vessels for the period 
October to December 2021 regarding the spatial and temporal gaps, 
from the cleaned Sat AIS data, per sea. 

 

Figure 55. Average time gap between two sequential AIS messages of a vessel 
for Sat AIS and Ter AIS per day, time-series represent a 7 days 
moving average window. 

BAL 49.1 41747.5 12.7 26.1 53 84.1 

BAR 11.3 34614.7 4.5 8.2 16.1 25.8 

BLK 161.6 37348.8 28 73 194.1 458.3 

MED 41.3 43146.5 9 18 43.1 85.5 
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Figure 56. Average distance between two sequential AIS messages of a vessel 
for Sat AIS and Ter AIS per day, time-series represent a 7 days 
moving average window. 
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6.5.2 Reconstructing incomplete trajectories based on historical information 

We have designed and developed a novel data driven approach for accurately reconstructing 

trajectories with gaps, specifically designed for restoring trajectories from Sat AIS or sparse 

AIS datasets. The implemented technique takes advantage of historical data to discover 

frequently followed paths using graph theory methods. Firstly, the movement space, i.e., the 

sea areas of interest, is partitioned and transformed into a grid. For the purposes of accuracy, 

we selected a grid cell edge length equal to 1km. Furthermore, movement of historical data is 

modelled using vessel transitions between neighbouring cells. Cells are considered to be 

neighbouring in case they have no other cells between them, i.e., each cell has at most (8) 

neighbours (Figure 57). 

 

Figure 57. Each grid cell has (8) neighbours; the light blue arrows indicate all 
the possible transitions that may be followed by the vessel, while 
there can not be a single transition to the cell with the island 
(represented by the red arrow). 

After extracting all transitions between the cells, we transform the grid into a directed weighted 

graph. Each graph node represents a grid cell, while the edges of the graph are used to model 

transitions between neighbouring cells. The weight of each edge is calculated as the 

(Euclidian) distance between the centres of the cells. Additionally, a second weight-penalty, 

modelling the patterns of vessel movement, is assigned to each edge using the formula: 
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𝑝ℎ (𝑛𝑖, 𝑛𝑗) = 

 

𝑃𝐸 , 𝑖𝑓 𝑁(𝑐𝑖, 𝑐𝑗) = 0 

 

1 −  
𝑁(𝑐𝑖,𝑐𝑗)

∑𝑘  𝑁(𝑐𝑖,𝑐𝑘)
, otherwise 

where 𝑝ℎ  (𝑛𝑖 , 𝑛𝑗) is the second weight between nodes 𝑛𝑖 and 𝑛𝑗 , (𝑐𝑖 , 𝑐𝑗) are the corresponding 

neighbouring cells, 𝑁(𝑐𝑖 , 𝑐𝑗) is the number of transitions between these cells and 

∑𝑘 𝑁(𝑐𝑖 , 𝑐𝑘), is the total number of outgoing transitions for cell 𝑐𝑖 . Finally, for neighbouring 

cells with no transitions observed between them a weight-penalty equal to 𝑃𝐸 is assigned. This 

penalty should be a real number greater than or equal to 1, indicating that a larger price needs 

to be paid for such a path. Note that all other weight-penalties can be bounded by 0 and 1, with 

smaller values assigned to more frequent transitions. 

This process extracts useful information regarding vessel movement in the area that can be 

used to generate possible paths during AIS gaps. The process of estimating such missing 

paths consists of the following steps: 

I. Identify the AIS gap within a trajectory and the two cells where the gap started and 

ended. 

II. Use the aforementioned graph to extract a path between these cells, through an 

enhanced A* algorithm. 

III. Transform the returned path, expressed as a series of grid cells, to a series of real 

coordinates.  

IV. Assign a timestamp for each generated point, based on the length of the resulting 

path and the overall interval. Incorporate the resulting coordinate-timestamp pairs in 

the original AIS trajectory. 

As mentioned, a modified version of the A-star algorithm (A*)[49] is used to generate the 

possible path the vessel followed during its communication gap. Designed for obtaining the 

shortest path between two graph nodes in a directed (weighted) graph, it uses two major 

components: 

A. the weighted graph 

B. a heuristic function that returns an estimation of the distance required to travel from a 

current to a target node. 

Beginning from the ‘start’ node, at each step of the algorithm, the neighbours of an already 

visited node are investigated. For each neighbour, A* combines information from both (A) and 

(B) in order to update a calculated cost, in case it is part of the shortest graph. After assigning 

an estimated total cost to each neighbour, the current node is discarded. Then the algorithm 

moves on examining the one with the smallest total cost of all previously visited nodes. The 

A* algorithm terminates when the end node is reached, resulting in the shortest path in terms 
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of the graph’s weights. For the calculation of the estimated total cost of each neighbour the 

following formula is used: 

𝑓(𝑛𝑖)  =  [ 𝑔(𝑛𝑐)  + 𝑤 (𝑛𝑐 , 𝑛𝑖) ]  +  ℎ(𝑛𝑖 , 𝑛𝑡) 

where 𝑔(𝑛𝑐) is the cumulative total cost from the start node to the current node 𝑛𝑐 , 𝑤(𝑛𝑐 , 𝑛𝑖) 

is the graph weight between the current node and the neighbour in question (𝑛𝑖) and ℎ(𝑛𝑖 , 𝑛𝑡) 

is the result of the heuristic function that estimates the cost from the neighbour to the target 

node (𝑛𝑡). 

In our approach we alter the A* algorithm by incorporating the knowledge extracted from the 

historical data in the aforementioned cost functions. More precisely, a penalty function 𝑝(∙) is 

added to the calculation of the total cost: 

𝑓 (𝑛𝑖)  =  [ 𝑔(𝑛𝑐)  + 𝑤 (𝑛𝑐 , 𝑛𝑖) + 𝑝(𝑛𝑐 , 𝑛𝑖) ]  +  ℎ(𝑛𝑖 , 𝑛𝑡) 

where: 

𝑝(𝑛𝑐 , 𝑛𝑖)  =  𝑤(𝑛𝑐 , 𝑛𝑖)  ∗  𝑊𝑝 ∗ 𝑝ℎ(𝑛𝑐 , 𝑛𝑖)  

with 𝑤(𝑛𝑐 , 𝑛𝑖 ) being the weight (distance) between the two nodes as above, 𝑝ℎ(𝑛𝑐 , 𝑛𝑖) being 

the weight-penalty based on historical data and 𝑊𝑝 is a factor that determines the importance 

of the historical information during the gap-filling, ranging from 0 to 1. Additionally, since both 

𝑝ℎ(∙) and 𝑊𝑝 are bounded by 0 and 1 (with the exception of a 𝑃𝐸 penalty larger than one in the 

case of no transitions were found in the historical data), the 𝑝(𝑛𝑐 , 𝑛𝑖) function is in turn 

bounded by 0 and the real distance between the cells, thus providing a penalty normalised to 

the original graph. 

For the purpose of an experimental evaluation of this approach, a dataset with synthetic AIS 

gaps was created. More precisely, focusing on the eastern part of the Mediterranean Sea, i.e., 

the Aegean and Levantine Sea, a sample of (3000) trajectories was extracted. The combined 

dataset from both Ter AIS and Sat AIS from the month of October was used as a starting point. 

The extracted trajectories were continuous vessel paths, with no temporal gap larger than 15 

minutes between consecutive messages. Additionally, in order to avoid including vessel stops 

at port areas, segments shorter than 30 minutes where the vessel remained stopped/idle were 

removed from the trajectories. These segments were substituted by a single transition, from 

the start of the stop till the end, with the corresponding time interval deducted from the total 

trip duration. Moreover, for each trajectory a gap was formed using the starting and ending 

points.  

For each synthetic gap a reconstructed trajectory was exported using the proposed 

mechanism. Afterwards, the results of this process, as well as the results of a straight-line 

interpolation between the gap points were evaluated compared to the true path the trajectory 

followed. Since the resulting trajectories do not have the same number of points the FastDTW 

(Fast Dynamic Time Warping) [50] metric was used to determine the approach’s accuracy. As 

depicted in Table 8 the aforementioned approach provides comparable results to the straight-

line interpolation for gaps that range from 1 to 3 hours. A significant improvement can be seen 

when the temporal gaps have a duration greater than three hours, with an improvement of over 

16% and 26% for gaps of 3-6 and 6-24 hours respectively. 
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FastDTW (km) 

Trajectory gap 
(hours) 

1-3 Impr. (%) 3-6 Impr. (%) 6-24 Impr. (%) 

Number of 
trajectories 

1655 - 664 - 681 - 

Straight line 
interpolation 

1.94 - 5.38 - 16.45 - 

A* hist. 
(𝑾𝑷 = 𝟎. 𝟏) 

1.91 1.67 4.5 16.34 12.16 26.08 

A* hist. 
(𝑾𝑷 = 𝟎. 𝟑) 

1.91 1.44 4.47 16.91 12.11 26.37 

A* hist. 
(𝑾𝑷 = 𝟎. 𝟓) 

1.92 1.19 4.52 15.83 12.12 26.29 

A* hist. 
(𝑾𝑷 = 𝟎. 𝟕) 

1.94 0.3 4.61 14.21 12.55 23.67 

Table 8. Accuracy of the gap filling method (A* hist.), compared to the 
vessel’s true path, using the FastDTW algorithm. The Improvement 
(Imprv.) percentage is calculated with regard to the straight-line 

interpolation results as: 𝐼𝑚𝑝𝑟 =  100 ∗  
𝑆𝑙𝑖 − 𝐴𝑠ℎ

𝑆𝑙𝑖
, where 𝑆𝑙𝑖 is the 

FastDTW for the straight line interpolation and 𝐴𝑠ℎ the accuracy of 
the proposed method. 

6.6 Corrected Density maps  

This gap-filling mechanism is then used in order to reconstruct trajectories when large 

temporal gaps between AIS messages occur (see 0). The inclusion of these trajectories allows 

for a more accurate density calculation, throughout the area of interest. 

This process was applied upon the cleaned AIS data for the month of October, focusing on the 

Aegean and Levantine Sea. More precisely, the dataset from the combined Ter AIS and Sat AIS 

was used, as well as the dataset for all Sat AIS for comparison. For this analysis, gaps solely 

from class A vessels were reconstructed, since smaller vessels (class B) tend not to follow 

common routes. During the gap filling process, the gaps with duration from 30 minutes to 24 

hours were reconstructed. Also, a 𝑊ℎ factor of 0.3 was selected since it provided the best 

accuracy during the evaluation, while the resolution of the end density map results was chosen 

to be 10km. For the purposes of better visualising the contribution upon the resulting density, 

some difference maps were generated, similarly with the Ter AIS and Sat AIS comparisons 

(Figure 59 and Figure 60). In these maps, the green colour indicates no density change from 

the gap filling process, while blue and purple points to an increase because of it.
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Figure 58. Examples from the gap-filling 
process. The original trajectory is 
depicted in green, while the 
reconstructed segments during the 
gaps are in orange. 

 

Figure 59. Density maps for the month of 
October for all vessel types, from all 
AIS data (top), for an improved 
dataset using the gap filling process 
(middle) and the difference map. 

 

Figure 60. Density maps for the month of 
October for Fishing vessels, from all 
AIS data (top), for an improved 
dataset using the gap filling process 
(middle) and the difference map. 

As depicted in the above figures, the gap filling process provides useful information regarding the movement of vessels during these gaps. In more detail, it can 

be seen that some main corridors of movement are presented as more complete while also some new pathways for specific vessel types were discovered and 

enhanced, e.g., for the fishing vessels. Such conclusions are more obvious when processing datasets composed only of Sat AIS data, where AIS gaps are much 

more common. 

 

 

Figure 61. Density maps for the month of October for all vessel types, from 
Sat AIS data (top), for an improved dataset using the gap filling 
process (middle) and the difference map 

 

Figure 62. Density maps for the month of October for Cargo vessels, from 
Sat AIS data (top), for an improved dataset using the gap filling 
process (middle) and the difference map. 
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7. Conclusions and future work  

7.1 Conclusion  

The study performed by MarineTraffic (in collaboration with Ubitech) has provided a more 

precise insights regarding the accurate generation of vessel density maps.  

The project has gone through all the stages required for this kind of analysis: 

❑ State of the art analysis 

❑ Collection and transformation of the data sources  

❑ Raster based spatial analysis and performance comparisons  

❑ Proposed potential corrections and improvements  

The overall goal of this study to investigate the capabilities and capacities of AIS datasets for 

accurate density maps generation, and especially Satellite AIS capabilities and limitations, 

while exploring its complementarity with other sources (such as Terrestrial AIS and EO 

images). The results obtained from the analysis performed in this study clearly indicate the 

feasibility of these systems to capture AIS signals from space, outperforming Ter AIS in terms 

of coverage but underperforming in terms of accuracy and reliability.  

Regarding the methodology applied for assessing the capabilities of all vessel detection 

systems, an approach for quantitatively and qualitatively measuring performance was 

adopted.  

Performance measurements, counted 

1. the number of unique vessels received in a defined time interval, both at a regional 

scale and across EU waters 

2. the average distance between two sequential AIS messages of a vessel for the three 

Sat AIS providers per day. 

3. Average distance between two sequential AIS messages of a vessel for Sat AIS and 

Ter AIS per day. 

These indicators specify in particular each platforms capabilities in terms of capacity to detect 

the correct number of vessels in an area, but also the granularity of messages or detections.  

It must be noted that the capability of Sat AIS to identify a vessel strongly depends on the class 

of the AIS device used, the number of ships in the surrounding area and the density of traffic. 

Due to several reasons analysed in this study, Sat AIS strongly underperforms when detecting 

CLASS B AIS devices: thus, smaller ships. Overall, the performance test results returned 

promising results over low-density shipping areas for Sat AIS, while in areas of high density 
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the performance of Sat AIS deteriorated (due to saturation). Interestingly with the exception of 

Barents Sea, Ter AIS mostly outperformed Sat AIS in EU waters. Following this we are able to 

highlight areas and conditions of potentially low detection from Sat AIS, using Ter AIS as the 

ground truth for further analysis.  

Overall, the performance test results returned promising results for all sensor platforms with 

interesting results returned for the vessel detection from EO observation images. Especially 

Sentinel-2 imagery proves to be a valuable source of information and in certain conditions can 

even capture small vessels (e.g., class B), although limited by the cloud coverage combined 

with low revisit time of ESA satellites. For density-maps use case, though, Sentinel-1 proves to 

be better due to the fact that SAR products are not affected by weather conditions. Sentinel-1 

helped us uncover areas where density is higher than the one perceived via AIS, as well as dark 

areas and/or areas prone to AIS packet collisions. Although Sentinel-1 revisit time is still worse 

than the frequency of AIS messages, it still outperforms Sat AIS. As a result of this study, we 

would argue that all sensors should be used in order to obtain a complete picture of the actual 

vessel density of an area.  

We must note that a one-to-one comparison of the performance of all sensors can be 

misleading, due to coverage areas selected or traffic density in the region.  

Due to the orbits of the satellites and the temporal “snapshots” used for the analysis, it is not 

always possible to provide a 100% reference ground truth for comparisons.  

Based on the findings the following overall conclusions can be drafted: 

• Sat AIS and Ter AIS are strongly complementary. While Ter AIS may have higher 

granularity and accuracy in the majority of cases, Sat AIS can provide data outside 

the Ter AIS coverage.  

• Areas and conditions where Set AIS underperform can be mapped and used for 

reference  

• EO imagery highly complements the “image” above by detecting vessels often unseen 

by the other sources (interference, device malfunction, congestions etc.)  

• Incomplete trajectories can be accurately repaired using historical data and should 

not be discarded from the datasets.  

We presented a novel trajectory reconstruction method that can be used for density map 

generation. This makes use of historical trajectory data to reconstruct a lossy trajectory as 

accurately as possible; thus not disregarding any data. We demonstrate that this leads to 

much more accurate density maps.  

The main outcomes of the project are: 

• Performance analysis highlights the strong complementarity of all above sources  

• EO detection fusion pipelines implemented have proved promising results 

• The proposed novel trajectory reconstruction method based on historical data 

provides and accurate method for improving vessel density maps  
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• The lack of freely available software for this kind of work led to the public release of a 

toolbox providing a number of modules to support handling AIS data while improving 

their transformation into actionable visualisations such as density maps 

Overall, this study will provide valuable inputs for improving the knowledge in vessel activities 

in EU waters. 

 

 

The MarineTraffic Toolbox is published under the Creative 

Commons license (Attribution-NonCommercial-ShareAlike 

4.0 International (CC BY-NC-SA 4.0) 

It is available online at 

https://www.marinetraffic.com/research/the-marinetraffic-ais-toolbox/  

  

https://www.marinetraffic.com/research/the-marinetraffic-ais-toolbox/
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7.2 Nest steps 

Regarding future activities, the project identified the following issues to be promoted 

• This type of analysis and data fusion have proved promising results. But several questions 

remain open in relation to the EO detection capacity. This approach should be further 

developed by setting up more demonstration projects, which would explore several EO 

platforms and their capabilities, and also fine tuning part of this process. In this study we 

used Sentinel 1 and Sentinel 2, it might be worthwhile to consider a similar approach 

using commercial providers.  

• During the course of the project, the value of historical information was highlighted for 

trajectory reconstruction. Such data holds insights for several important projects, such as 

MSP, changing patterns of life detection and similar. A specific mechanism and funding at 

an EU level would be worthwhile exploring to consider such potential.  

• Another issue is related to “dark vessels”. Throughout the duration of the project, we 

detected a number of vessels that due to interference, malfunctioning devices or other 

reasons were not transmitting their AIS messages although within coverage. It is 

proposed to further investigate the AIS signal behavior and specifically “dark vessel” 

detection methods through information fusion as this can be of exceptional importance in 

cases of sanctions avoidance, illegal fishing and others.
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Appendix 

Technical Specifications 

The presented methods were developed and tested with the following technical specifications. 

Operating System GNU/Linux Ubuntu 20.04.3 LTS (x86_64) 

Programming Language Python 3.8 

 

The (primary) required Python libraries and tools for our implementation are listed in the 

following table. 

Python Tool / Library Version Primary Purpose 

json json-c 0.15 Data file handling 

jsonschema 4.5.1 Data file handling 

sys - Data file handling 

glob - Data file handling 

fiona 1.8.21 Data file handling 

pickleshare 0.7.5 Data file handling 

csv - Data handling 

bz 
bzip2 

1.0.8  
Data handling 

pandas 1.4.2 Data handling 

geopandas 

0.10.2 

 

pygeos=0.12.0 

 

Data and geometry handling 

pyproj 3.3.1 Data transforming 

scipy 1.7.3 Data transforming 

numpy 1.22.4 Data transforming 
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fiona 1.8.20 Geometry file handling 

shapely 1.8.2 Geometry handling 

haversine 2.5.1 Geometry data handling 

osgeo -  Map (TIFF) creation 

networkx 2.8.2 Graph queries for trajectory reconstruction 

asttokens (ast) 2.0.5 Data storing 

math - Mathematics manipulations 

concurrent.futures - Process parallelization 

fastdtw 0.3.4 Trajectory comparison 

Other tools Version  Primary Purpose 

GDAL  

(gdal_rasrterize, 

gdaldem) 

2.2.3 Map (TIFF) creation 

 


