

Definition of challenge areas

- 11 chanllenges defined
 - Wind farm siting,
 - Marine protected areas,
 - oil platform leak,
 - climate change,
 - coastal protection,
 - fishery management,
 - fishery impact,
 - eutrophication,
 - river discharge,
 - Bathymetry,
 - Alien species.

- More challenges recommended
 - MSP
 - Operational oceanography
 - Ocean acidification
 - Hypoxia
 - Marine pollutant
 - Underwater noise
 - Atmospheric deposition
- More in-depth definition of some of the existing challenges, e.g. fishery, will reveal more data needs

9/15/2017 3

What has been collected? A review of Baltic Sea observations

- Different EMODnet Lots have included following data sources in Baltic Sea:
 - CMEMS
 - BOOS
 - SeaDataNET(partly)
 - HELCOM (partly)
 - ICES (partly)
 - AQUANIS
 - EUSEAMAP
 - AIS
 - BSHC etc.

- More efforts needed
 - Research projects (eg BONUS)
 - Coastal fishery
 - Rivers
 - National data
 - Commercial data

9/15/2017

4

What data have been used? How the data have been used?

A description of data usage for given challenge areas: key variables, data types, data usage

Table 3.1. Data usage in "Wind farm siting"

Variable	Data type	Usage	
Wind profiles	In-situ	Obs. at site: wind resource estimation,	
(speed, direction)		normal/extreme condition assessment, safety and	
		cost assessments i.e. expectable wind load on the	
		wings, wind shear, availability analysis of suitable	
		maintenance and construction windows.	
		General: Model validation and data assimilation.	
	Model	Use as defined in "Obs. at site"; boundary forcing for	
		ocean models.	

9/15/2017 6

MODne Variable	Data type	Accessibility	Completeness/	Resolution	Precision
			coverage Spatial/ Temporal	Hor./Ver./Te mp.	
		Delivery type/time			
Wind profiles	In-situ	Existing data should be more open to research	More new data are needed. Time series over sea are sparse and too short on hub height (100m-130m)	Lack of offshore wind profile measuremen ts	FFU* Observed and modelled winds are roughly of
	Model	Post processing should make wind profile data available	Current data are adequate for extreme estimation up to 50yr return period. Longer time series are needed for 100yr return periods.	Reanalysis needs higher spatial resolution	the same quality.
Air	In-situ (ECAD,	FFU	More data are needed.	FFU	FFU

What is data adequacy? How can it be assessed?

Definition:

- Quanlitative: Data availability against user needs -> adequacy
- Quantitative: effective coverage, explained variance, quality for reconstructing fields etc.

Way of assessment:

- Fit-for-purpose assessment: for specific challenges, to assess if the data are adequant to F4P (delivery time window, accessibility, resolution, coverage and precison).
- Quantitative assessment (combine model and satellite data): OSE, OSSE.

Complexity in F4P assessment:

- From data to user applications, it's often not a direct use rather than via a value chain (e.g., intermidiate users). For same application, skillful users need less data (e.g. in sea level challenge, in optimal design of sampling)
- User needs definition may not be precise (eg for eutrophication assessment) as user cases can be limited.
- User needs may evolve with time (eg wind profiles)

9/15/2017 10

The way of using data in BSCP – an example of sea level task

- Problem: only 15 sea level stations have data longer than 100 years, but users need 100y sea level data everywhere in the Baltic Sea
- Solution: 20 year model reanalysis is used to establish a statistical model to reconstruct the 100yr sea level time series on the model grid
- Coloured circles (validations): correlation with independent gauges [%]
- Black squares: model stations

9/15/2017

Sustainability of basin checkpoint

- Good user cases are needed
 - Blue growth sectors
 - MSFD
 - Operational oceanography
 - MSP
- New challenge areas
- Clear evidence of data use – regular service report
- Coherent data policies to ensure EMODnet data collection and dissemination

9/15/2017 13

Assessment of in-situ monitoring netwo						
EMODnet _ OSE/OSSE						
European Marine Observation and Data Network OSES/OSSES	Monitoring network	Major outcomes				
She et al. (2007)	SST from NOAA satellites and in-situ	RMSE is reduced by 43%; satellites have much larger impacts than in-situ data				
Fu et al. (2012)	ICES T/S (20 years)	Below 60m, RMSE of T is reduced by 35%, mean bis of by 80%, RMSE by 52%				
Zhuang et al. (2011)	ICES T/S	Impact time of T/S assimilation is about 3 weeks				
Fu (2016)	ICES T/S (10 years)	Mean bias of SST, T, S, and mixed layer depth is decreased by 57%, 49%, 43% and 43%; for Chl-a, DIN and DIP 15.5%, 9%, and 23%.				
Liu et al. (2016)	Baltic T/S/N/P, oxygen, ammonium (30 years) from SHARK database	RMSD is reduced by 59%, 46%, 78% and 45% for oxygen, nitrate, phosphate and ammonium.				
Wan (2014)	2 T/S sections (Route 1 and Route) of two gliders, (OSSE)	Mean deviations is reduced by 6.6%, 2.3%, 13% for T and 3.8%, 27%, 30% for S for Route 1, Route 2 and Ro 1+2				
Madsen et al. (2015)	Tidal gauges and altimetry	RMS error is reduced by 35%				

