Renewable Energy & Marine Data: The case for an Integrated Approach

John.shaw@mainstreamrp.com 10 March 2011

Introduction

An Integrated Sea information System is needed to accelerate the emerging € 6.4 Trillion Offshore Wind Energy Market : ISIS.

To create ISIS, new policies, new standards, greater cooperation and innovative Information and Communication Technologies are needed.

- Mainstream Renewable Power
- Offshore Wind in Europe
- Offshore Wind Developers' needs
- Supergrid's needs
- Data Management initiatives
- Integrated Sea Information System
- Next Steps

Mainstream Renewable Power

- Offshore Wind in Europe
- Offshore Wind Developers' needs
- Supergrid's needs
- Data Management initiatives
- Integrated Sea Information System
- Next Steps

Vision

Mainstream Renewable Power was founded by Dr. Eddie O'Connor in February 2008.

" Our vision is of thriving economies and communities liberated from the restrictions of fossil fuels, using renewable energy as their mainstream source of power. "

The world is experiencing a **once-off historical transition** to sustainable fuels: Each one of our 195 countries must go through it.

4 fundamental issues drive this transition ;

Climate change
Ever-increasing Demand for Energy
Rising Fossil Fuel Prices
Energy Security

This Vision demands a strong Business Model

Mainstream's Business Model

•Sustainability as a business is what we do at Mainstream : wind & solar.

Mainstream's business model spans 4 key areas ;

Mainstream's 14,000+ MW Projects' Pipeline

Mainstream Renewable Power

• Offshore Wind in Europe

- Offshore Wind Developers' needs
- Supergrid's needs
- Data Management initiatives
- Integrated Sea Information System
- Next Steps

> 50 % of new Generation Capacity from Wind & PV

- 1,800,000 MW of installed Wind Power needed by 2050
 - Based on projected 2050 energy requirements
- 200,000 MW from Onshore Wind : the limit
 - The limit because Europe is the world's most crowded Continent
- 1,600,000 MW from Offshore Wind
 - Plenty of space to grow beyond this target
 - Achievable at €3,600,000.00 per MW installed

Equates to :

- €5.8 Trillion investment in Offshore Wind Turbines by 2050.
- €0.6 Trillion investment in associated Offshore transmission and distribution.

EU Energy Perspective : 2050 Mix

Energy Demand

Offshore Winds farms are needed for Europe to meet Green House Gas Targets

Interconnection across EU member states is needed to enable Offshore Wind

Interconnection, or Supergrid is vital for delivery of any 2050 scenario

2020 offshore grid connections must be Supergrid-compliant

Video : 2050 Challenge

Click Here

Offshore Wind Resource

Offshore Wind in the North Sea represents Europe's best option

Europe's Electricity Demand

Europe's Power Demand EU27 Demand (2008):

Offshore Wind Power Available

Area considered with 5MW/Km ²	
North Sea:	35,700,000 MW
Mediterranean Sea:	12,500,000 MW
Fotal	48,200,000 MW
Equates to:	161,000 TWh
Conclusion :	
Demand	3,200 TWh
Supply	161,000 TWh
Supply v Demand	x 50

Mr Brian Hurley, Wind Site Evaluation Ltd. Offshore Wind Resources in Europe Marseilles, March 2009

Offshore Wind in the North Sea can meet Europe's need, 50 fold

Mainstream's Projects in the North Sea

Key Features

•Excellent wind resource

•Convenient location for major energy consumers

•10 countries are now focused & organised to developing this resource

•Mainstream has 3 projects in the North Sea:

•Germany •Scotland •England

• 33,000 MW of Offshore Wind Round 3 Development licences issued by Crown Estate in UK waters

Offshore Wind Farms in the North Sea will deliver the EU Energy Strategy

- Mainstream Renewable Power
- Offshore Wind in Europe
- Offshore Wind Developers' needs
- Supergrid's needs
- Data Management initiatives
- Integrated Sea Information System
- Next Steps

• Mainstream's fundamental belief is that marine data is a Public Good.

- It should be collected once and used many times.
- Key needs ;
 - Accessibility and Management:
 - Clear policy of ownership, licensing & access for all publicly funded data collection
 - Single point of access to marine data and information
 - Discourage cost-recovery pricing from public bodies
 - Data Standards and Quality control:
 - Common standards across jurisdictions and disciplines
 - Ensure the above is addressed in publicly funded data collection contracts
 - International Coordination:
 - Harmonised approach across the EU in relation to all of the above:
 - Links provided and maintained to EU/global databases and initiatives

Benefits of improved data management ;

- Measurable reductions in costs to find, access and retrieve data
- Wider and more reliable data and information upon which to base assessments
- Mechanisms to share results and data with stakeholders

Offshore Business Process

5 % of the € 6.4 Trillion investment will be for ICT Equates to € 320 Billion ICT investment

- Mainstream Renewable Power
- Offshore Wind in Europe
- Offshore Wind Developers' needs
- Supergrid's needs
- Data Management initiatives
- Integrated Sea Information System
- Next Steps

Supergrid

An electricity transmission system, mainly based on direct current, designed to facilitate large scale sustainable power generation in remote areas for transmission to centres of consumption, one of whose fundamental attributes will be the enhancement of the market in electricity.

Key Features

•A new transmission backbone for Europe's decarbonised power sector

•Enables distribution of energy from 1,600,000 MW Offshore Wind Farms

•A transformational approach to electricity generation and distribution

•Captures clean energy generation and delivers firm renewable power across Europe

•Goes beyond existing point-to-point interconnectors

•Innovative technology needed to deliver HVDC Supernode technology

•Requires a strategic partnership across the Supply Chain

•Cost to build Europe's Supergrid;

€0.6 Trillion Offshore Supergrid€0.6 Trillion Onshore Supergrid

The wind is always blowing somewhere; Supergrid creates portfolio effect

Supergrid Consortium

The consortium represents companies and organisations with a mutual interest in promoting the policy agenda for a European Supergrid.

CEO Ana Aguado run the Consortium which exists to accelerate the Supergrid via a 5 point strategy:

- 1. Develop Standards
- 2. Create Offshore Transmission Operator
- 3. Establish EU Regulations
- 4. Create Single Electricity Market
- 5. Establish legal basis for trading

The Consortium has 20 members so far

Video : 2050 Supergrid

Click Here

Europe's Supergrid in 2050

7 Innovation Trajectories are needed;

- 1. Bigger Wind Turbines
- 2. HVDC Transmission Cables
- 3. Supernode
- 4. Next-Generation Civil Engineering
- 5. Bigger Construction Vessels
- 6. Bigger Ports
- 7. Better ICT

Dr Eddie O'Connor, Mainstream Renewable Power Supergrid Launch London, March 2010

An inevitable transition to Sustainability with 7 Innovation Trajectories

Innovation # 1 : Bigger Wind Turbines

Turbines will get bigger : 20 MW

Floating Turbines will be viable

Dr Eddie O'Connor, Mainstream Renewable Power C & F Offshore Summit London, April 2009

Bigger, better turbines are needed

Innovation # 2 : HVDC Transmission Cables

Overhead Cables

Sea Cables

Mr Gunnar Asplund, ABB HVDC Supergrid - Technology and Costs Marseilles, March 2009

HVDC uses proven technology

Innovation # 3 : Supernode

Mr Joe Corbett, Mainstream Detailed design of the Supernode Marseilles, March 2009

Supernode is a proven concept

Innovation # 4 : Next Generation Civil Engineering

Offshore wind Jack-up

Mr Fenno Leeuwerke, Hochtief Construction Building at Sea and 3rd Generation of Ships Marseilles, March 2009

Bigger, stronger Jack-up Technology

Innovation # 5 : Bigger Construction Vessels

Mr Fenno Leeuwerke, Hochtief Construction Building at Sea and 3rd Generation of Ships Marseilles, March 2009

Bigger Ships for bigger loads

Innovation # 6 : Bigger Ports & Better Logistics

Requirements for UK's Offshore Plans;

- Develop two completely new ports
- One on either coast of the UK
- More than transport nodes
- Focal point for regional development
- Centres of excellence for R + D
- Training centres for technologists/technicians
- New manufacturing centres

Dr Eddie O'Connor, Mainstream Renewable Power C & F Offshore Summit London, April 2009

An entirely new approach to Logistics is needed

Innovation # 7 : Better Information Technology

Power Distribution Management

Hi-Speed Wireless Communication

Supernode Power Controls

Monitoring & Controlling Risk

Wind Turbine Control Systems

John Shaw, Mainstream Renewable Power ICT Strategy for Offshore Wind

Surveying & Modelling the Sea

Better ICT will add value throughout the business process

Video : 2050 Forward

Better ICT will add value throughout the business process

- Mainstream Renewable Power
- Offshore Wind in Europe
- Offshore Wind Developers' needs
- Supergrid's needs
- Data Management initiatives
- Integrated Sea Information System
- Next Steps

EU & Marine Data Management

- 4 EU Directives in particular impact industry:
 - Marine Strategy Framework Directive 'establish and implement coordinated monitoring programmes for ongoing assessment of the environmental status of [member state] marine waters'
 - INSPIRE Directive 'adopt measures for the sharing of data sets and services between public authorities for the purpose of public tasks and the Environmental Information Directive'
 - Birds and Habitats Directive 'establish a network known as Natura 2000 (SPA, SACs)
 - Data Collection Framework for Fisheries 'collect, manage and provide high quality fisheries data for the purpose of scientific advice, mainly for appropriate fisheries management decisions'

There are many directives and initiatives underway

Marine Knowledge 2020

European Commission Maritime Affairs and Fisheries

Marine Knowledge 2020 : Marine Data and Observation for Smart and Sustainable Growth Launched 13 September 2010 Led by Iain Shephard

Key Objectives

This Initiative from the Commission will ensure the following are achieved ;

- Data from the EU-supported research programmes are more available for re-use
- Common standards and policies
- Contribute towards an interoperable global marine knowledge system

Cost

- €110.0 Million spent per year by EU on marine data collection
- € 18.5 Million additional allocation per year for EU's Marine Knowledge 2020 initiative

Offshore Wind Developers need to contribute to Marine Knowledge 2020

IMarEST Offshore Renewables Special Interest Group

The Institute of Marine Engineering, Science and Technology (IMarEST) is the leading international membership body and learned society for marine professionals, with over 15,000 members worldwide.

Special Interest Group established for Offshore Renewables. December 2010

Led by John Sturman, Chairman, IMarEST Offshore Renewables SIG

Aim is to be <u>the</u> global professional organization that represents the offshore renewables industry.

Important activities will include knowledge sharing amongst members, policy formulation and standard setting.

An ICT Working Party is in place.

IMarEST Offshore Renewables SIG will help drive ICT Standards

The UK Marine Environmental Data and Information Network (MEDIN) is a collaborative partnership driving improved management and access of marine data.

Key Achievements 01 September 2010

- Wide public and private sector involvement ; 30 organisations, including Mainstream
- Created a set of common standards : Tender Specification Clause
- Established 4 Data Archive Centres (DAC) Network : priority public marine data sets
- Launched web portal ; central search capability <u>http://www.oceannet.org/</u>

Key Gaps

- No obligation for Industry-collected data
- Granularity for project-specific data storage
- No 3D Visualisation, No Simulation

- Mainstream Renewable Power
- Offshore Wind in Europe
- Offshore Wind Developers' needs
- Supergrid's needs
- Data Management initiatives
- Integrated Sea Information System
- Next Steps

Convert Data into Wisdom

An Integrated Sea Information System (ISIS) is needed : doesn't currently exist

Precedent: 3D Data Visualisation

Pittsburgh Supercomputing Center (PSC) computational scientist consultants work closely with discipline scientists to provide tools for visualization and analysis on their Cray XT3.

"too much information.": When it comes to a scientist's desire to simulate physical phenomena in realistic detail, there is no such thing.

3D visualisation of Atlantic Currents University of Miami & PSC

Realtime Ocean Visualisation Lenfest Ocean Future Blender 2.48

http://www.youtube.com/watch?v=Z5Q1Pwrp8 bw&feature=youtube_gdata_player

Precedent: Running What If Scenarios

Visualising data makes it easier to identify risk.

Simulating scenarios makes it easier to predict future risk.

Sediment Scour Simulation

Northwest Hydraulics Consultants. CUDA

http://www.youtube.com/watch?v=NIGzrlslhQg &feature=youtube_gdata_player

3D visualisation of Soil Displacement

Carnegie Mellon University & PSC

- Mainstream Renewable Power
- Offshore Wind in Europe
- Offshore Wind Developers' needs
- Supergrid's needs
- Data Management initiatives
- Integrated Sea Information System
- Next Steps

Step 1. Form ISIS Consortium; prospective members

European Commission Maritime Affairs and Fisheries

The consortium must represent all key stakeholders

Step 2. Agree The ISIS Problem Statement

Business Problem :

As Europe expands Offshore Wind Energy, Developers need to collect and analyse large quantities of data and meet regulatory requirements. In the absence of an Integrated Sea Information System, a variety of methods will be used to collect, store, analyse and compile data leading to delays and inefficiencies.

	Current State	Integrated Sea Information System (ISIS)	
Work Flow	Inefficient, disparate methods across the Offshore Industry, No agreed workflow methodologies exist across multiple stakeholders.	Integrated Approach	
Single version of the truth	No single data repository exists, No single data analysis methodology exists. Difficult to move between 3 rd party providers of data	Integrated approach to data management. all collected data stored in a single n-dimensional database, standardised visualisation method	
Speed of decision-making	Risks not captured in unitary manner	Integrated approach to risk management: rule-based decision-making to predict and mitigate risk, to identify trends and patterns, to run what-of scenarios, to peer into the future	
Fast Learning	Difficult to move between 3 rd Party providers of data	Integrated approach to Knowledge Management. standard Reports for Regulatory Compliance	
Security	Loose Security: Position unknown, difficult to enforce.	Complies with ISO27001 . Tight Security :Position known, protected.	
Cost	High repeating cost for individual organisations. High Total Cost of Ownership.	Low Total Cost of Ownership. Initial high cost to develop, lower cost to operate, all stakeholders share the cost.	
Personal & Team Productivity	Inefficient	Satisfy all Stakeholders with one system. Clear, Single Repository for all Data. Measure Once, Use Manage times, Open Systems Standards	

ISIS : faster, better, more reliable, more secure

• Innovation is inhibited by data licence issues:

- Data licence issue throughout European waters
- Over 400 legal entities have licensed ownership of data in Britain
- Need EU Data Ownership Policy

• Innovation is inhibited by regional data strategy variation:

- National data archives are at different levels of maturity
- Low Interoperability of data and metadata across EU
- Need EU standard for data archives

• Role for EU Commission:

- Build on existing progress made by data communities
- Provide sustainable funding for Innovation
- Provide framework for licensing and re-use of data

Conclusion

ISIS needs a consortium from across Industry, Commission, Academia to define policies, standards, specifications

The basic building-blocks for ISIS exist

ISIS will accelerate Offshore Wind Energy Development

Further information

Andy Kinsella	John Shaw	Adam Bruce	Joe Corbett
CEO Offshore	Head of Information Services	Head of Corporate Affairs	Head of Technical Services
Mainstream Renewable Power	Mainstream Renewable Power	Mainstream Renewable Power	Mainstream Renewable Power
+353 87 640 7376	+ 353 87 283 6499	+ 44 207 189 8347	+353 87 237 3251
Andy.kinsella@mainstreamrp.com	John.shaw@mainstreamrp.com	adam.bruce@mainstreamrp.com	joe.corbett@mainstreamrp.com