Storage of CO₂ below the Seabed

Klaus Wallmann

Cluster of Excellence: "The Future Ocean"

IFM-GEOMAR

Kiel, Germany

Storage Options Below the Seabed

CO₂ storage sites

Possible leakage pathways

Sleipner

 CO_2 separated from natural gas, 1 Mt CO_2/a , since 1996, water depth: 80 m, sediment depths: 900 m

Sleipner

Lateral spread of CO_2 stored in the subsurface

Injected volume: >14 x 10⁶ m³

No pressure increase in the reservoir

Source: StatoilHydro (2007)

Seepage of natural gas at Sleipner?

Source: Heggland (1997)

Natural CO₂ seepage in the North Sea

Source: Linke et al. (2009)

Natural CO₂ seepage in the North Sea

Source: Linke et al. (2009)

Natural CO₂ seepage in the North Sea

Chemical anomalies in bottom waters above the salt dome (CTD survey)

Source: Linke et al. (2009)

Snoehvit, Barents Sea

 CO_2 separated from natural gas 0,7 Mt CO_2/a , since 2009 water depth: 330 m sediment depth: 2600 m

Natural Seepage at the Seafloor -Pockmarks-

Source: Judd & Hovland (2007)

Research and policy needs (geoscience perspective)

- survey the seafloor above geological formations currently used for CO₂ storage (Sleipner, Snoehvid) for natural and man-made seepage
- understand the geological, physical, and chemical controls on leakage of CO₂, formation fluids, and natural gas from sub-seabed geological formations through faults, fractures, boreholes and other high permeability conduits
- study natural seepage as precursor and analog for future CO₂ leakage from sub-seabed storage sites
- develop a monitoring scheme for the safe operation of present and future sub-seabed CO₂ storage sites

Potential environmental effects of leakage

- Benthic organisms and ecosystems at the storage site may be affected by local acidification of pore fluids and bottom waters through CO₂ leakage and the release of toxic substances dissolved in formation fluids and mobilized from the sedimentary overburden.
- Pelagic ecosystems could be affected by seawater acidification if large scale leakage would occur.
- Atmospheric pCO₂-values might increase under extreme leakage scenarios.

CO₂ bubble plume modeling

CO₂ bubbles are rapidly dissolved in ambient bottom waters Atmospheric CO₂ emissions are unlikely to occur

Volcanic CO₂ seeps in the Mediterranean -Effects on benthic biota-

Source: Hall-Spencer et al. (2008)

Volcanic CO₂ seeps in the Mediterranean -Effects on benthic biota-

pH: 8.1

7.8

Source: Hall-Spencer et al. (2008)

Volcanic CO₂ seeps in the Mediterranean -Effects on benthic biota-

Source: Hall-Spencer et al. (2008)

Seepage of volcanic CO₂ in the Okinawa Trough 2000 m water depth

SO 196, CLATHRATE project, Rehder, Haeckel et al. (unpubl.)

Natural pH variability in shelf surface sediments (no CO₂ seepage)

Source: Zhu et al. (2006)

Research and policy needs (bioscience perspective)

- determine the sensitivity and resilience of benthic organisms towards enhanced CO₂ values in bottom waters and pore waters
- identify indicator organisms featuring a strong response to elevated CO₂ levels
- characterize and model the effects of CO₂ leakage on benthic and pelagic organisms and ecosystems for different CO₂ emission rates
- identify sensitive areas in the European EEZ that should be excluded from off-shore CO₂ storage activities (potential marine protected areas)
- define a maximum permissible CO₂ leakage rate from an ecosystem perspective

Environmental risk assessment

Likelihood of leakage

Conclusions

Given that large-scale storage of CO_2 below the seabed is a corner stone of the European CCS and climate policy, there is an urgent need to:

- constrain the likelihood of leakage
- study the effects of leakage on marine biota and ecosystems
- develop a comprehensive monitoring strategy
- define the best environmental practices for the operation of storage sites
- evaluate the existing legal framework for sub-seabed storage