

17-21 JUNE 2019 **EU SUSTAINABLE ENERGY WEEK** SHAPING EUROPE'S ENERGY FUTURE

#EUSEW19

Algae aquaculture

Can protein from ocean save land, freshwater and carbon emissions?

Prof. Marianne Thomsen (mth@envs.au.dk)
with input from PhD student Xueqian Zhang (xqzh@envs.au.dk)

Global macroalgae production 2016

Wet weight

- World total 31.2 Mt
- 30.1 Mt from aquaculture
- 3.5% is wild harvest

- EU total 0.5 Mt
- 3-6% (1.5-3 kt) from aquaculture

Global and European production

Dry weight (dw) seaweed

- **2016**
 - EU total 50 kt
 - Global 3 Mt
- **2050**
 - EU production 3500 kt,
 - Global production 300 Mt
- GHG capture at time of harvest
 - \bullet -1.9 to -1.9 kg CO₂e / kg dw
- Net GHG capture
 - E.g. -0.2 to -1.3 kg CO_2 e / kg dw

Global and European production

Dry weight (dw) seaweed

- **2016**
 - EU total 50 kt
 - Global 3 Mt
- **2050**
 - EU production 3500 kt
 - Global production 300 Mt
- GHG capture at time of harvest
 - \bullet -1.9 to -1.9 kg CO₂e / kg dw
- Net GHG capture
 - E.g. -0.2 to -1.3 kg CO_2 e / kg dw

Ecosystem Services

- Benefit that human obtain from an ecosystem (MEA, 2005)
- Seaweed cultivation +
- Ecoindustrial system =

 Engineered ecosystem services mimicking the natural system

Engineered supporting & regulating services

Ecosystem health restoration

- Water quality restoration
 - Assimilate 20-30 g N/kg dw & 2-3 g P/kg dw
- Climate change mitigation
 - Assimilate 1.3-1.9 kg CO₂e/kg dw
 - Mitigates ocean acidification
- Habitat
 - Attract fish fry during the growth phase

Provisional ecosystem services

Emission capture for biobased production

- Harvested biomass is converted into high value bioactive compounds
- Seaweed derived products substitutes emission-intensive products

Provisioning Ecosystem Service

Ecosystem Health Restoration

Circular Seaweed Bioeconomy

Carbon

Neutral

Fair

Trade

Green Chemistry

Blue Growth

Biosphere

Bottom-up Influence

Provisioning, Regulating, Cultural, and Supporting Ecosystem Services

Top-down Influence

Sustainable Development of Society

Macroalgal biorefinery system I

Climate neutral ethanol, proteins and fertilizer production

Macroalgal biorefinery system I

Climate neutral ethanol, proteins and fertilizer production

1. Emission Capture

2. Process Emissions

3. Avoided Emissions

Macroalgal biorefinery system I

Climate neutral ethanol, proteins and fertilizer production

SHAPING EUROPE'S ENERGY FUTURE

#EUSEW19

Ethanol, proteins and fertilizers

■ Transport - Water

Life Cycle Assessment results

- Net Climate Change emissions
- Net Climate Change
 mitigation services ②
 - -14 to -285 kg CO₂e per ha

Cultivation

EU level biorefinery system I

EU scenario - climate neutral production of biofuel and feed

- 2050 < 0.002% of the EU EEZ
- 840 kt ethanol
 - 26% of the energy consumed by light and heavy duty trucks and busses
- 340 kt protein
 - 2-6% of imported crude soy protein
- -640 kt CO₂e capture
 - 15 % of the GHG capture at time of harvest

Global level biorefinery system I

Global scenario - climate neutral production of biofuel and feed

- 2050 < 0.03% of the planets ocean surface area
- 70 Mt ethanol
 - 8 % of EU transport sector energy consumption
- 35 Mt protein
 - A factor 2,5 above the EU imported soy
- -43 Mt CO₂e capture
 - 15 % of the GHG capture at time of harvest
 17-21 JUNE 2019

SHAPING EUROPE'S ENERGY FUTURE #EUSEW19

Energy or feed conversion pathways

Life Cycle Assessment of conversion pathways

Life Cycle Assessment results

 Net Climate Change mitigation services for all scenarios

EU scenario - fuel, fertilizer & climate change mitigation

- 2050 < 0.002% of the EU EEZ
- 620 kt Biogas
 - 35 % of the energy consumed by light and heavy duty trucks and busses
- Nutrient cycling
 - 50 kt N and 8 kt P removal
- -2400 kt CO₂e capture
 - 55 % of the GHG capture at time of harvest

Global scenario - fuel, fertilizer & climate change mitigation

- 2050 < 0.03% of ocean surface area
- 50 Mt Biogas
- Nutrient cycling
 - 4 Mt N and 0.7 Mt P removal
 - 7% of N emission to surface waters
 - 40% of P emission to surface waters
- -200 Mt CO₂e capture
 - 55 % of the GHG capture at time of harvest

Seaweed biorefinery products

Decarbonizing of the economy?

The agricultural sector CO₂e emission reduction from Climate feed

- 10% of the total EU CO₂e emissions (439 Mt CO₂e)
- 45% of the emission from the agricultural sector originate from enteric fermentation
 195 Mt CO₂e (7.8 Mt CH₄)
- Algae based climate feed additive for methane reduction in dairy cows
- 2% feed supplement by dw mass
- 30% emission reduction

A climate resilient feed

EU scenario -Reducing enteric fermentation

- EU raw milk production (2017)
 170 Mt
 - 2700 kt dw seaweed needed (by 2048)
- 1.2 Mt avoided CH₄ emissions (30 Mt CO₂e)
- 10-50% reduction of the total emission from the agricultural sector

A climate change mitigating fish feed

Global scenario - Soy protein substitution

- Substituting imported soy protein to EU with algae protein (14 MT)
- Avoided emissions from soybean production
 - at 100% elimination of soy protein in EU feed -2.4 Mt CO₂e (avoided)
- System level approach
 - 100% soy protein substitution with algae-based protein result in a net negative emission of -17,5 Mt CO₂e

The energy sector

EU scenario - emission reductions from substitution of gasoline

- EU 22 TJ in 2050
- 25% of the 2017 gasoline consumption by light and heavy duty trucks and busses

Conclusion 1/3

Pathway to a Climate neutral Economy

- Production of farmed seaweed as a GHG removal technology
 - Market entry of climate neutral seaweed biorefinery products
 - Substitution of emission intensive production systems

- Agricultural Sectors
 - 10-50% reduction of emission intensity of the agricultural sector
- Energy Sector
 - <1% reduction of emission intensity of the transport sector</p>
- Blue Economy Sector
 - Unexplored potential for GHG capture, storage and use for production of high value biomolecules

Conclusions – not to forget 2/3

Yes! protein from ocean can save land, freshwater in addition to carbon emissions

- 4% of the EU total agricultural area (1.8 mill km²) could be saved in an EU seaweed self-supply scenario
- 30-64% of the EU total irrigated agricultural area (0.1 mill km²) could be saved in an EU seaweed self-supply scenario
- In a seaweed import scenario land saving may be significantly higher

Conclusions 3/3

- Valorization of regulating and supporting engineered ecosystem services that is provided to the marine environment is important!
 - Climate change mitigation (CO₂e assimilation)
 - Water quality restoration (carbon and nutrient capture and use)
 - Service revenue to support the income of seaweed farmers
- Appropriate regulations to allow the sector to grow

f EUENERGYWEEK

● EUENERGYWEEK

For questions – contact Marianne Thomsen mth@envs.au.dk