State of knowledge regarding the potential of macroalgae cultivation in providing climate-related and other ecosystem services

Report prepared for Eklipse by Macroalgae EWG & MWG

eklipse

EWG

Bermejo, R, Buschmann, A, Capuzzo, E, Cottier-Cook, E, Fricke, A, Hernández, I, Hofmann, LC, **Pereira, R**, van der Burg, S.

<u>MWG</u>

Grace, M, Mukherjee, N, Wendling, L

More information: https://eklipse.eu/request-macroalgae/

Requester: DG Maritime Affairs & Fisheries, Unit for Maritime Innovation, Marine Knowledge and Investment.

Background:

This request aims to explore and map existing knowledge and identify knowledge gaps and trade-offs, to inform future development of macroalgae culture strategies and policies. Furthermore, more knowledge is needed to evaluate impacts in terms of water, energy and land use, changes in sedimentation rates and structure of local communities, and potential pollution and risk of releasing invasive species into the environment and can contribute to the development, promotion and implementation of adequate and timely policy frameworks.

What is the state of knowledge regarding the potential of macroalgae cultivation in providing climate-related and other ecosystem services?

Delphi		Quick Scoping Review	
Pros	Cons	Pros	Cons
 Updated information Direct answers Rapid Low cost Rigorous Repeatable 	 Time consuming Respondent willingness Bias by strong opinions Bias by expertise/sector Prone to conflict of interest 	 Peer-reviewed findings More objective Less conflict of interests Relatively fast Low cost Rigorous 	 Time lag Indirect answers Bias by funding Bias by expertise No assessment
		Repeatable	

Delphi methodology

We identified more than 100 possible respondents, aiming to get a diverse geographical (but focused on Europe) and sectorial representation

>100 respondent invited > Only 22 respondents, participated in the 1st round, mainly from academia

22 respondent invited 2nd round → Only **6 responses**

ustry	Hatchery/nursery					
0	Quiltingtion					
fessional association	Cultivation					
ernational organisation	Processing					
Conserv	ation and management					
	Marketing and sales					
	Education					
		0	10	20	30	40
			Percent (%) of respo	onses	

Delphi methodology

Ecosystem services	
Macroalgae grown for food (including hydrocolloids)	3.8
Regulation of water quality (including eutrophication, bio- mitigation, bioremediation)	3.2
Macroalgae grown for feed	2.7
Maintaining nursery populations and habitats (including gene pool protection)	2.0
Carbon sequestration/storage/accumulation by macroalgae	1.3
Climate regulation (CO ² , carbon cycle, DMS, other)	1.3
Macroalgae grown as a source of energy	0.5
Pest and disease control	0.2
Coastal protection (erosion, wave reduction, flood control)	0.0
Characteristics of living systems that enable education and training	0.0
Elements of living systems used for recreation and tourism	0.0

Potential negative impact or trade-off	
Conflict with other users/uses (at land or sea)	3.17
Unknown environmental impacts (e.g., on deep sea, benthic and pelagic ecosystems)	2.50
Mismatch in supply and demand of biomass	2.00
Shifts in seaweed genetic diversity	2.00
Pollution (e.g., plastics)	1.50
Negative impacts on ecosystem biodiversity	0.83
Aesthetics	0.83
Over exploitation of the environment	0.83
Water flow reduction	0.67
Physical damage (e.g., damage to the sea floor resulting from the farming structures, anchors, stakes, etc.)	

Knowledge gaps category	Average Score	Sub-categories
Farming technologies	2.3	Strain improvement
		Ensure consistent production quality
		Develop mechanisation
Technologies for macroalgae processing	2.0	
Market data	1.67	Adequate value-chain connections
		Detailed market information
		Adequate price
Economic data	1.5	Appropriate business cases
		Information on valorisation of ES
Policy	0.8	NA
Data obtained from "real" macroalgae farming	g 0.8	Appropriate scale of production
		Appropriate spatial planning for farming sites
Environmental data	0.3	Nutrient uptake/bioremediation
		Biodiversity impact
		Occurrence/impact of nuisance species
Certification	0.3	CO ² footprint
		Food safety
		Ecosystem provisioning
Training	0.0	NA

Delphi methodology

QSR methodology

Keywords:

Seaweed Macroalga* + Aquaculture Farm* = 6 con Cult*

Databases:

Inclusion/exclusion criteria:

Exclusion criteria	Inclusion criteria	
Phase 1: Formal criteria		
Non-English	English	
Before 2000 or after 06/2021	Between 01/2000 and 06/2021	
Non original articles	Peer-reviewed original articles	
Non available in SCOPUS or WoK	Available in SCOPUS or WoK	

QSR methodology

Information extracted:

- Year
- Location (Continent)
- Species (taxonomic group)
- Type of farm
- Size of farm
- Ecosystem services
- Identified constraints
- Identified negative impacts/risks

Geographic location

280 Eligible Articles

37 Genus comprising 77 species, but potential taxonomic mismatches (e.g. *Ulva, Gracilaria, Porphyra*)

In Europe: 11 genus comprising 17 species 4 non native species

Land-based

- Large scale
- Small scale
- No information

Near shore

- Large scale
- Small scale
- No information

Offshore

- Large scale
- Small scale
- No information

 $\hfill\square$ No information

CONSTRAINS

- Environmental
- Technical
- Methodological
- Economic
- Political
- Social

MAIN CONCLUSIONS

Conceptual model summarizing constraints, knowledge gaps and existing open questions (for each PESTEL category) of seaweed aquaculture, as well as potential related ecosystem services and disservices identified in this study. Sizes of PESTELs correspond to their importance, based on the total contribution of constraints and knowledge gaps from the QSR.

MAIN CONCLUSIONS

KNOWLEDGE GAP	OPEN QUESTIONS
Site selection	Which environmental parameters define a suitable site for the implementation of a sustainable seaweed farm?
Scale of cultivation	How does the scale of seaweed cultivation affect the ecosystem services provided?
	At what scale does seaweed cultivation provide the most ecosystem services and the most economic benefit? Do these scales match?
	How can the carrying capacity for seaweed cultivation (or optimal farm size) in a particular area/water body be quantified?
Technology	How can we improve the technological advancement of macroalgae production?
	How can consistent biomass/product quality be ensured?
	 Clear standards and guidelines for obtaining permits Reducing risks to seaweed farmers Financial support for technological innovation Identification of high value products
	How can seaweed production and processing become more energy efficient?
Economics	What is the best business approach for different scales of seaweed cultivation in Europe?
Environment	What are the environmental and carbon footprints of large-scale seaweed farms, and does this depend on the species cultivated?
	How can losses due to nuisance species/disease/pests be minimized?