COOPP - Cooperation Project for Maritime Surveillance

Towards a common data model for integrated maritime surveillance

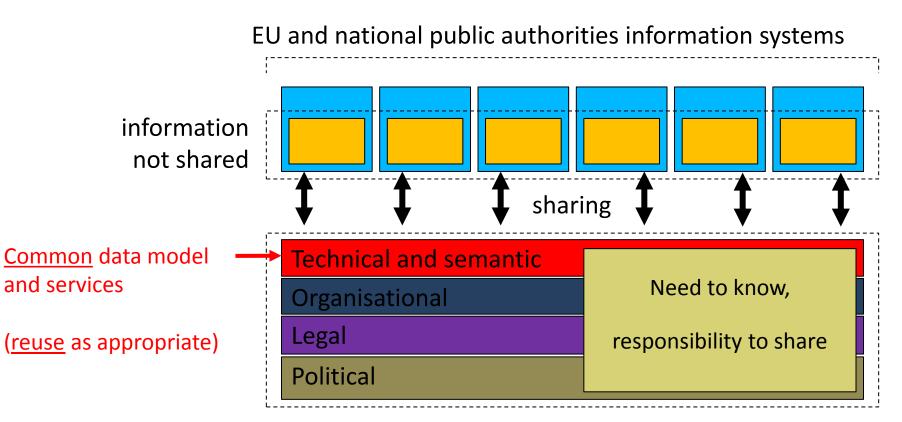
DIAS MARQUES Fernando

fernando.marques@dgpm.mam.gov.pt

Programming Services Director PRT Directorate-General for Maritime Policy

Agenda

- Project's objectives
- Rational for a common solution
- Data model definition
- Services definition
- Participants
- Sectorial expected benefits
- Marine and Maritime Information Exchange
- Way ahead


Project's objectives (overall)

- Objective 1: To define and agree on a selection of use cases with related information services and attached access rights (WP2 and WP4)
- Objective 2: To define common data formats and semantics (**WP5**)
- Objective 3: To contribute to the cost-benefit analysis of Integrated Maritime Surveillance (WP3)

Project's objectives (WP5)

Interoperability environment (CISE)

(why having common data model and services?)

An example from the communities: the tyranny of multiple languages

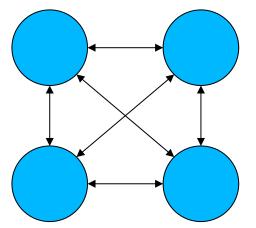
Relay interpreting

One source language

Several target languages

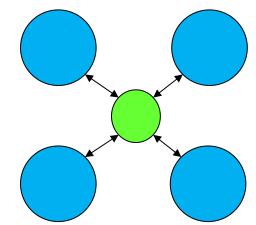
Step 1: Interpretation to a common language

Step 2: Interpretation to target languages



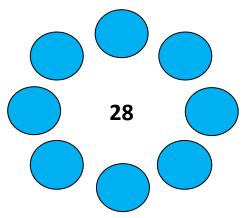
*** * * **

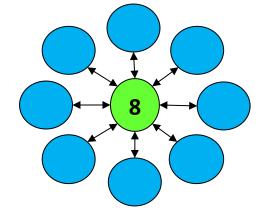
(why having common data model and services?)


Example 1: Implementing interoperability among 4 different systems:

No common data model/services

- Higher cost (6 units of cost)
- Heavier development
- Heavier maintenance
- Higher complexity


Common data model/services


- Lower cost (4 units of cost)
- Easier development
- Easier maintenance
- Lower complexity

(why having common data model and services?)

Example 2: Implementing interoperability among 8 different systems:

No common data model/services

Common data model/services

Presently **360** authorities are performing coast guard functions in the EU (64 620 / 360) Data models tend to grow with time. CISE is a **long term** endeavour

Common data model: Less complex and expensive solution regarding implementation/maintenance

(why not reusing what exists - model, services, system?)

An example from the transport domain: the personal transport

How we do it - Highly customized - Thinking about: <u>Me</u>	How we use it - Personal activities - Shared only with close ones
How we feel about it - Best in the world - Personal bonding	How others feel about it - Love - Hate

(why not reusing what exists – model, services, system?)

An example from the transport domain: the group transport

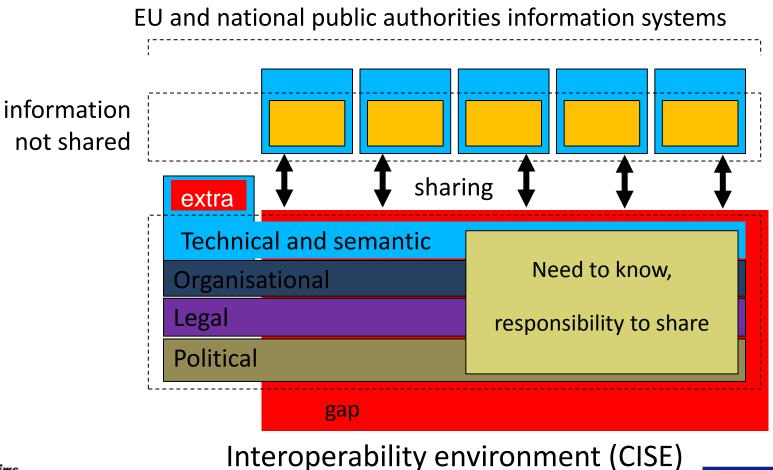
(why not reusing what exists – model, services, system?)

An example from the transport domain: the <u>public</u> transport

How we do it - Impersonal - Thinking about: <u>Anybody</u>	How we use it - Any activities - Share it with anyone
How we feel about it - Good to have - Practical	How others feel about it - Good to have - Practical

(why not reusing what exists – model, services, system?)

System's anatomy


	Authorities	Communities	CISE
Applications	Ο	Ο	
Services			
Process services Compose and integrate services to implement business processes	0	Ο	
Activity services Implement application specific business capabilities	Ο	Ο	
Capability services Implement business capabilities	0	0	0
Entity services Abstract data stores and expose the information	0	Ο	0
BUS services Common facilities. Part of the required infrastructure.	Ο	Ο	Ο
Data	Ο	0	

[1] Cohen, Shy. Ontology and taxonomy of services on a SOA. Architecture Journal. April 2007

(why not reusing what exists - model, services, system?)

Maritime Surveillance

*** * * **

(why not reusing what exists – model, services, system?)

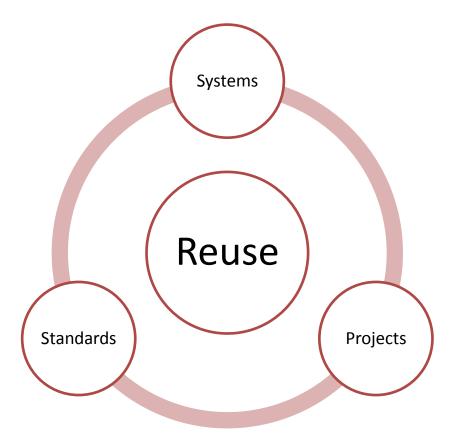
- Existing solutions are more complex and do not suffice
- Existing solutions may cause conflicts between interoperability and operational competing requirements
- Existing solutions may raise legal issues
- Existing solutions will cause strong interdependence across sectors

(methodology)

- Core data entities selection
 - To wait or not to wait...
 - Narrowing down the number of entities
- Selecting what to reuse
 - How big is related?
 - What is the point on reusing, after all?
 - Solving conflicts
 - Playing with abstraction

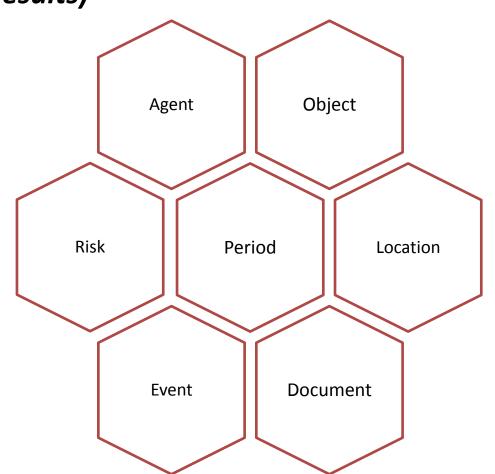
(results)

- Useful, understandable
- Usable, extensible
- Simple, sufficient, flexible
- Special features
 - Auditing
 - Security
 - Reliability
 - Validity
- UML, XSD, OWL
- Aligned with the ISA programme



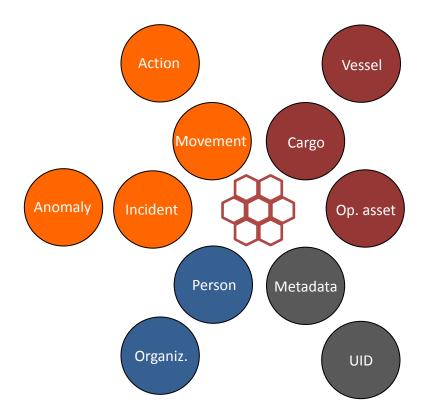
(results)

- 18 data entities
- 271 data attributes
- > 50% TAG Data matrix
- 77% reuse rate
- 34 sources



(results)

- 7 main entities
- Essential
- Inter-related



(results)

- 11 complementary
- Expressiveness
- Special features

(verification and validation)

- Objectives
 - Expressive enough
 - Technically correct
- TAG review
 - Contributions and recommendations fully adopted
- Independent business review
 - 100% used by the use cases enhanced
- Independent technical review
 - Minor corrections, recommendations

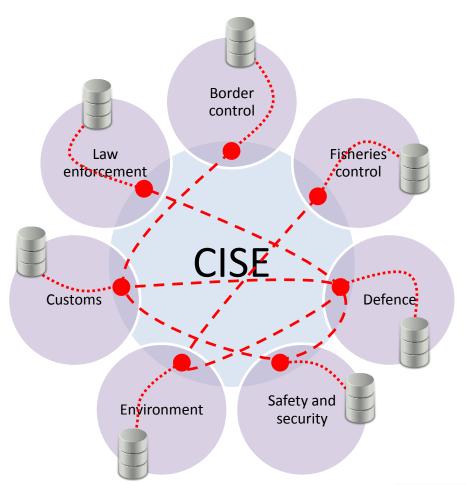
(methodology)

- Looking into the services definitions
- Baby steps: entity services first
- The patterns collection
- Putting it all together: The service model

(results)

- 15 entity services
- 5 messaging patterns
 - Pull
 - Pull delayed
 - Broadcast pull
 - Push
 - Broadcast push
- Service model
- Up to 75 services
- Extensible
- WSDL

(verification and validation)


- Objectives
 - Adequate
 - Technically correct
- Independent business review
 - Minor corrections, recommendations
- Independent technical review
 - Minor corrections, recommendations

('cise' it)

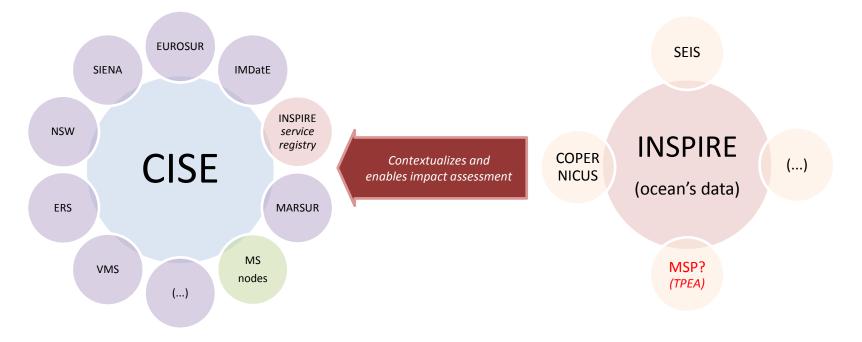
- Realize the services
- Connect them into each other
- Connect them to existing systems
- Enhance it all

Participants

- 35 experts from 11 MS + EUSC
- 2 JRC experts + 4 External experts
- JRC's collaborative tools
- Other tools as necessary
- 5 face to face meetings
- Several virtual meetings
- 12 months

Overall expected benefits

- Lower interoperability costs
- Better interoperability management and governance
- More information shared
- Improved decision processes



Marine and Maritime Information Exchange (food for thought)

Leveraging interoperability. Fostering sustainable development. Supporting activities (i.e. Security). Leveraging interoperability. Fostering policy-making.

Limits and ocean's data (system, natural resources and

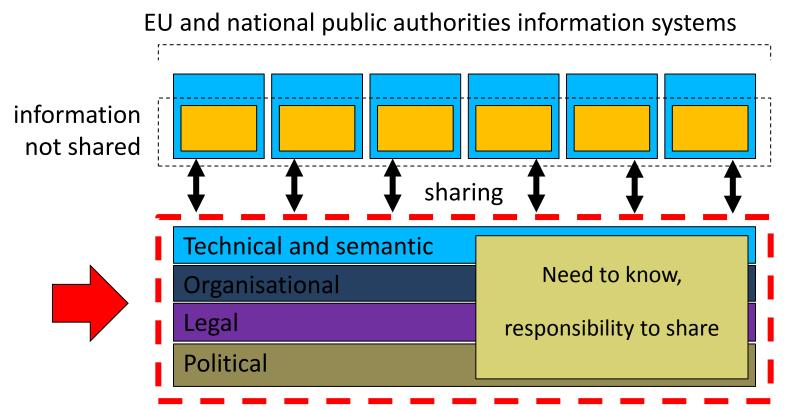
Exogenous ocean's data. Socio-economic data?

Maritime Surveillance * * * * * * *

socio-economic).

Way ahead

(recommendations)


- Enhance the present deliverables
- Implement and experiment as soon as possible
- Design a technical reference architecture
- Design the information exchange management component
- Design the governance structure
- Adopt and iterative and incremental approach

Way ahead

(how to govern this?)

Interoperability environment (CISE)

COOPP - Cooperation Project for Maritime Surveillance

Towards a common data model for integrated maritime surveillance

DIAS MARQUES Fernando

fernando.marques@dgpm.mam.gov.pt

Programming Services Director PRT Directorate-General for Maritime Policy

