

Progress in summary

- Major update of **products** (329) in BSCP portal:
 - OWF siting,
 - Climate change,
 - Fishery Impact,
 - Fishery management,
 - Eutrophication
 - Bathymetry and Alien species.
- Sustainability report & DAR2 reports (12 reports)
 - Needs on data access
 - Needs on data quality, format and readiness for use
 - Data gaps due to lack of observations
 - Future sustainability

Baltic Sea Checkpoint

BSCP value-added products: http://www.emodnet-baltic.eu/map

OWF Oil platform | Climate | Sea level **MPA Fishery** management

			3-			
#of products	135	2	56	1	12	26
	Fishery impact	Eutro- phication	Rivers	Bathymetry	Alien Species	Total
#of products	16	72	1	3	5	329

EMODNet European Marine European Marine

Baltic Sea Checkpoint

Needs on data access (easiness, time line etc)

- Easiness of access: in general EMODnet provides a convenient data access service. further improvement for chemistry (fast access with automatic approval) and biological data (more aggregated features)
- Timeline of access: fast delivery of ship data
- Inter-comparison of data access from different portals: data coverage are different from different data portals, e.g., SeaDatNet, ICES, EMODnet and HELCOM, users should be aware of this. Is it possible to have a one stop.shop?

Needs on data access to existing national data

- Offshore wind profiles
- Currents data from research and commercial projects
- Coastal profiles, orthophoto maps and Lidar data on shore evolution
- Substrate data collected in national fishery survey
- Sediment grain sizes and corresponding accumulation rates
- Bathymetry data from Lithuania, Russia, Latvia and Poland
- river temperature, discharges, nutrient loads and salmon observations
- Fishery catches on both industrial and consumption species from national databases; coastal fishery

Baltic Sea Checkpoint

Needs on data quality, format and readiness for use

- Examples of use cases are analyzed which reveal needs for improving the data quality, format and readiness for use in existing data portals, e.g.,
 - Phytoplankton data in ICES and EMODnet for climate trend analysis,
 - Sea level data in EMODnet for extreme analysis
 - Bathymetry data for modelling
 - Historical SST, sea level and ice chart needs to be digitized.
 - Big limits in VMS data in terms of resolution and spatiotemporal coverage

Data gaps due to lack of observations

- Wind data in >150m
- 78% of MPA's is not readily available and scattered among sources for information for identification of IUCN categories.
- Information for assessment of the network coherence according to MSFD Article 13 is currently Inadequate.
- Oil spill detection: gaps found in Latvia, Lithuania and Russian waters
- The available datasets are still not long enough and the data density by sub-basins is not satisfactory to get statistically significant trends
- For eutrophication assessment, more than half of the sub-basins iare inadequate in chl-a, DIN, DIP and secchi depth
- · Sediment transport, grain size of sediments
- Bycatch estimates
- River data are not complete (only available for certain years)
- Bathymetry raw data in shallow waters
- lack of centralised databases for compiling and analysing data on alien species impacts on ecosystem and economy

Baltic Sea Checkpoint

BSCP awareness

- Presentations in 2017
 - EGU 2017
 - BOOS Annual meeting
 - CMEMS Marine week
 - EuroGOOS conference
 - MEMC Workshop
 - Baltic Sea from Space Conf.
 - WCRP-CLIVAR Conference on Regional Sea Level Changes and Coastal Impacts, USA
 - Baltic Sea MSP and Blue Growth Workshop
 - EU-China Workshop
 - EU-China Blue Year Event

- Publications
 - Kudryavtseva, N. A. and T.
 Soomere, 2017: Satellite
 altimetry reveals spatial
 patterns of variations in the
 Baltic Sea wave climate, Earth
 Syst. Dynam., 8, 697-706,
 - She J. 2017. Assessment of Baltic Sea observations for operational oceanography. Proceedings of *The 8th* EuroGOOS conference, 4-6 October 2017, Bergen, Norway, p79-87.
 - Jun She and Jens Murawski:
 Integrated use of marine data to fit for the purpose of social benefit in Baltic Sea. J. Opr. Ocean. (to be submitted)

Future

New product needs in existing challenge areas

New potential challenge areas

New knowledge generator

EOOS and SBCP

Baltic Sea Checkpoint

New product needs in BSCP challenge areas

- Offshore wind farm siting: more in-depth siting study with cost-benefit analysis
- MPA: potential impacts of novel pollution types on MPA's network
- Oil platform leak: data adequacy study for oil leaks due to shipping activities and oil spill in icing waters.
- Climate change: adequacy of biogeochemistry data in identifying longterm climate variability; 4D reconstruction of long-term database
- Coastal protection: adequacy of sediment grain size and evolution of substrate
- Fishery management and fishery impact: data adequacy for management of industrial fishery and consumption fishery; abrupt changes of the fishery in Baltic Sea and their causes;
- Eutrophication: data adequacy for assessing impacts of river loads on eutrophication status, reference state
- River discharge: data adequacy for estimating inputs of pollutants (plastics, heavy metals, toxic chemicals, radionuclides)
- Bathymetry: inter-comparison of different datasets on data quality; data adequacy in shallow waters (<20m) which may not be covered by large survey vessels.

New potential challenge areas

- · Marine Spatial Planning,
- · Operational oceanography,
- · Ocean acidification,
- Hypoxia,
- · Marine pollutant,
- Underwater noise
- Atmospheric deposition
- MSFD Reference state reconstruction

Baltic Sea Checkpoint

New marine knowledge generator: responsive and indivisulized

- Data -> knowledge
 - Integrated knowledge generator
 - Citizen knowledge generator
 - Sectorial knowledge generator

EOOS and SBCP

- A EOOS barrier-breaker and gap filler: breaking institutional, instrumental and community barriers in ocean observing to provide improved or new data and product service, filling the gaps through integration (ROOSs as important players)
- **EOOS data validator**: to check the quality and appropriateness of EOOS data to fit for the purpose of use
- **EOOS value demonstrator**: to demonstrate and quantify the value of EOOS data by developing use cases
- EOOS gap identifier: to identify the EOOS data gaps and monitoring priorities based both on science and user needs
- EOOS sampling strategy optimizer: to rationalize and design optimal sampling strategies (where, when and how to fill the gaps identified)

