

TRAINING IN MICROALGAE-RELATED INDUSTRIAL PROCESSES Dates: July 3rd - 7th 2023

Teaching hours: 20h

Area of knowledge: Chemical Engineering and Biotechnology

Academic coordinator: Francisco Gabriel Acien Fernández & Tomas Lafarga Poyo

Registration: https://www.ual.es/index.php?cID=97767

INTRODUCTION

This is an intensive course about microalgae-based processes, on which expertise from academia and industry explain the major aspects of these processes. The course will cover all the aspects related with microalgae-based processes, from (i) the modelling of strains and light utilization, to (ii) the design and operation of photobioreactors, (iii) harvesting and processing of the biomass to achieve reliable and high-value products, and (iv) scale-up to commercial size. Fundamental and practical aspects will be covered always including the participation of internationally recognised researchers, young researchers and the exchange of experiences between the assistants. Lecturers have extensive experience in bioeconomy, climate change, and in the development of processes that will make industrial production more sustainable in the future.

The course is oriented towards PhD students or equivalent experience students in microalgae biotechnology and chemical engineering fields from whatever fundamental area as microbiology, biology or biological/ biochemical engineering, chemistry and biochemistry. The course is also intended to give those working in the industry an opportunity to upgrade their knowledge in microalgae biotechnology.

MAIN GOALS				
1.	To provide the basic knowledge, and needed skills to grow microalgae,			
	characterize the biomass and conceptualize microalgae processes.			
2.	To demonstrate the feasibility of microalgae-related processes and identify the			
	markets in which these processes can be suitable			
3.	To provide access to real data and experience of microalgae-related industrial			
	processes			

CONTENT					
Module	Description				
MODULE 1:	The microalgae cell. Photosynthesis and kinetic models. Basic techniques				
Biology and	of microalgae culture and maintenance. Stoichiometry and kinetic of				
basic principles	microalgae cultures. Microalgal culture optimization outdoors. In this				
of microalgae	module, the fundaments of microalgae production are reviewed. Major				
cultures	factors influencing the growth of microalgae in addition to modelling of this				
	behaviour are included. The module is completed with laboratory practices				
	on light irradiance measurements, Chlorophyll fluorescence quenching				
	measurements, photosynthesis rate and photosynthetic efficiency.				

MODULE 2:	Fundamentals of PBR design. Fluid-dynamics and mass transfer in PBR.
Fundamentals	Heat and momentum transfer in PBR In this module, the fundamentals of
of microalgae	the design of photobioreactors for the production of microalgae are
photobioreact	reviewed. This includes mass and heat transfer phenomena and how mixing
ors	influences the light regime to which the cells are exposed in the culture. The
	module is completed with experiments in pilot-scale photobioreactors
	locate at IFAPA research centre as part of SABANA project. Measurement
	of culture conditions gradients in raceway and thin-layer reactors, and
	variation of those culture conditions when modifying mass transfer
	(air/CO2) into the reactor.
MODULE 3:	Microalgae harvesting (coagulation-flocculation, sedimentation, filtration
Harvesting and	and centrifugal recovery). Cell disruption. Fundamentals of recovery,
processing of	extraction, isolation and purification of microalgae products. Microalgae
microalgae	biorefinery concept. In this module, the processes required for the
biomass	harvesting and processing of microalgae biomass are reviewed. The
	challenge is to minimize the energy and cost of these operations at the
	same time that maximizing the quality of end-products. The module is
	completed with laboratory practices on harvesting (coagulation-
	flocculation-sedimentation), cell disruption and extraction methods. Major
	aspects to be studied will involve flocculation and centrifugation
	experiments.
MODULE 4:	Life cycle analysis. Risk analysis. Techno-economic analysis. In this module,
Economic and	the sustainability of microalgae-related processes is reviewed. Both
sustainability	environmental and economic aspects will be studied, in addition, also social
analysis of	sustainability will be introduced. The module is completed with the visit and
microalgae	revision of the SABANA project such as the case study.
processes	
MODULE 5:	Food ingredients from microalgae (tailored lipids, carotenoids and PUFAs).
Commercial	Phycobiliproteins recovery and purification. Commodities and bulk
application of	chemicals (biofuel and biofertilizer). Microalgae and Aquaculture.
microalgae	Wastewater treatment with microalgae cultures. In this module, a general
and techno-	overview of the most relevant applications of microalgae is performed.
economic	Susscessful commenrcial process in addition to potential new processes will
assessment of	be included. The module is completed with the revision of the BIORIZON
microalgae	project such as the case study.
processes	

COURSE METHODOLOGY			
In-lab sessions 🛛	Company visits 🛛		
Academic visits	Talks 🗆		
Lectures 🛛	Others 🗆		

Each module will be divided into two hours of lectures and three hours of practice. Course lectures (10 hours), short lab and pilot plant practical (15 hours). The language of the course is English. On the course will participate experts from academia and private companies all of them with extensive experience in the field.

REQUIREMENTS

Degrees in Microbiology, Biology, or in Biochemical, Chemistry and/or Biochemistry Engineerings

ACADEMIC VISITS & NETWORKING

- SABANA demo facility at IFAPA research centre: to perform practices and training activities
- BIORIZON BIOTECH: Industrial facility producing biostimulants and biopesticides based on microalgae
- FCC AQUALIA: Industrial facility performing wastewater treatment using microalgae

ASSESSMENT

- 40% Final written exam on the contents corresponding to the course lecturers
- 40% Assessment of the reports presented by the students on lab practices
- 20% Regular attendance during the course

Organized by

Vice-Rectorate for Internationalization Universidad de Almería Tel.: +34 950 01 5816 E-mail: <u>sabroad@ual.es</u> <u>www.ual.es/sabroad</u> Instagram | Facebook | Twitter